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Abstract

This thesis is presented as a result of the study done by theraunder the guidance of
Dr.A.Lourdusamy for the award of the Degree of Doctor in 8$dphy in Mathematics from
Manonmaniam Sundaranar University, Tirunelveli, Tandngndia.

Graph labeling has developed into one of the important are@aph Theory for last
fifty years. Though graph labeling is considered primariltheoretical subject in graph
theory and discrete Mathematics, it serves as models faetyaof applications. It is used in
many applications like coding theory, x-ray crystallodgrggradar, astronomy, circuit design,
communication network, transport problems, data base gement etc. to list a few[15].
For each type of application, depending on the problemtsitaza type of graph is used for
representing the situation. Then a suitable labeling neeih@pplied on that graph and the
problem is solved with ease and comfort.

Graph labeling techniques derive its origin to a functiomed S— valuation by Rosa
[28]in 1967. He called a functiofi a 5— valuation of a grapld- with p vertices and; edges
if fis an injection from the vertices @f to the set{1,2,--- , ¢} such that, when each edge
xy is assigned the labéf (z) — f(y)|, the resulting edge labels are distinct. He introduced
[B— valuation as well as a number of other labelings as toolsdéaothposing the complete
graph into isomorphic subgraphs [7]. Several years latelpi@b [9] studied the same and
named it graceful labeling and this name is well known in Gréqeory today.

A labeling of a graplG is an assignment of labels either to the vertices or edgehke If
domain is the set of vertices, then the labeling is known a@exdabeling. A vertex labeling
of a graphG is an assignmenf of labels to the vertices af that induces a label for each

edgeuv depending on the vertex labels. Otherwise it is edge lapelm edge labeling of



a graphG is assignmenf of labels to the edges @f that induces a label for each vertex
depending on the edge labels. There are varieties of vesterch as edge labeling that are
already in the literature [7].

After its origin from g— valuation, graph labeling methods grew far and wide--
valuation began as a means of attacking the conjecture ofeRithgit K5,.; can be
decomposed intdn + 1 subgraphs that are all isomorphic to a given tree witdges [29].
In 1980, Graham and Solane [10] introduced Harmonious iladpeVhich came from their
study of modular versions of addittive base problems thageafrom error-correcting codes.
They defined a graph with edges to be harmonious if there is an injectiprirom the
vertices ofGG to the group of integers modulpsuch that when each edge is assigned the
label f(z) 4+ f(y)(mod q), the resulting edge labels are distinct.

Later Acharya introduced Super graceful labeling.(7Aq)— graphG is said to be a
super graceful graph if there is a bijective functipn V(G) — {1,2,--- ,p + ¢} such
that f(uv) = |f(u) — f(v)| for every edgeuv € E(G) Acharya and Germina [1] further
introduced an edge analogue of graceful labeling and nanasd/ertex graceful numbering.
Singh and Devraj [31] brought in the concept of triangulaaagful graphs. They call a
graphG with p vertices andy edges triangular graceful if there is an injectipfrom V (G)
to {1,---,T,}, whereT, is the¢" triangular number and the labels induced on each edge
wv by | f(u) — f(v)| are the firsy triangular numbers.

This way there came into existence many variations of Grheef well as Harmonious
labelings. One significant example is Cordial Labeling idtroed by Cabhit [6]. For a graph
G if the funtion f is from V(G) to {0, 1} and for each edgey the label|f(z) — f(y)| is
assigned, therf is called Cordial labeling of7, when the number of vertices labele@nd
the number of vertices labeldddiffer at most byl and the number of edges labelednd
the number of edges labelédliffer at most byl. The other famous labeling methods are
Felicitous labeling, Magic labeling, Antimagic labelingean labeling, Prime labeling etc.
The fast growth of this area of study is evident from the faet imore than 2000 papers on
graph labeling methods have come out over the past five de¢éade

The concept of Mean labeling was introduced by SomasundarainPonraj [32]. A



graphG with p vertices and; edges is called a mean graph if there is an injective function
f from V(G) to the set{0, 1,2, - , ¢} that induces for each edge the Iabel{ww

such that the set of edge labels{is 2, - - - , ¢}. For example, Lourdusamy and Seenivasan
[17] have proved thatC,, snakes are mean graphs. Many others have also worked on this
notion of graph labeling.

Ramya, Ponraj and Jeyanthi [27] introduced a new variatiome#én labeling and
named it Super mean labeling. A super mean labefing an injection froml” to the set
{1,2,--- ,p+ ¢} that induces for each edge the Iabel{ww such that the set of all
vertex labels and the induced edge label§li; - - - . p + ¢}. They have proved that many
graphs, like paths, combs, odd cyclé¥,etc. are super mean graphs. Jeyanthi, Ramya and
Thangavelu in [12] have proved that graphs lik&; 4, are super mean graphs. Again they
in [13] proved that the graph obtained by identifying endg®bf two or more copies afs;
the graph obtained fror',, by joining two vertices ofC,, distance2 apart with a path of
length of two or three etc. are super mean graphs. In [14]nleyd&Ramya and Thangavelu
give super mean labelings féf,, U C,, andk— super mean labelings for many graphs.

Balaji, Ramesh and Subramanian use in [2] and&}lem mean labelingr super mean
labeling. They too have proved a variety of graphs to be $kateean graphs. Nagarajan,
Vasuki and Arockiaraj [24] introduced the concept of Supead Number of a graph. They
were inspired by [33] Sundaram, Ponraj etc., who broughténconcept oMean Number
Let G be a graph and lef : V(G) — {1,2,--- ,n} be a function such that the label of
the edgew is {%] and f(V(G)) U f*(E(G)) C {1,2,--- ,n}. If nis the smallest
positive integer satisfying these conditions togethehwie condition that all the vertex and
edge labels are distinct and there is no common vertex anellabgls, them is called the
super mean number of the gragtand is denoted byg,,,(G). They also have proved in [24]
that for any grapldz of orderp, S,,(G) < 27 — 2 and have provided an upper bound of super
mean number of a few graphs. Some results on mean labelingugred mean labeling are
given in [12], [13], [14], [15], [17], [25], [30], [34] etc.

Gayathri and Tamilselvi in [7] brought the notion @f, d)— super mean labeling defined

as follows; A(p, q)- graphG has a(k, d)— super mean labeling if there exists an injectjon



from the vertices o7 to {k,k + 1,--- , k + (p+ q)d} such that the induced mafj defined

on the edges off by f*(uv) = {ww has the property that the vertex labels and edge
labels together are the integers frénto k& + (p + ¢)d. Whend = 1, a (k, d)—super mean
labeling is called &—super mean labeling. In [14] the authors enlist mamsuper mean
graphs.

Lourdusamy and Seenivasan [16] introduced vertex meaitidgbas an edge analogue
of mean labeling as follows: A vertex mean labeling afvag) - graphG(V, E) is defined
as an injectiory : £ — {0,1,--- , g}, ¢x = maxXp, q) such that the injectioff : V. — N
defined by the rulg”(V) = Roun(%) satisfies the property thgt (V') = { f"(u) :
ueV}={1,2,..,p}, whereE, denotes the set of edges@hthat are incident at and N
denotes the set of all natural numbers. A graph that has exveréan labeling is called a
vertex mean graph dr —mean graph. They have obtained necessary conditions f@pdn gr
to be a vertex mean graph and have named a number of vertexgragars in [30].

Inspired and motivated by above developments in graphifapete introduce another
variation of mean labeling, name®lper Vertex Mean Labelingrhis type of labeling is a
variation of both Super mean labeling and Vertex mean lageliA Super Vertex Mean
labeling f of a (p,q) - graph G(V, E) is defined as an injection fronk’ to the set
{1,2,3,--- ,p + ¢} that induces for each vertexthe label defined by the rul¢’(v) =
Round (%) whereE,, denotes the set of edgesé@hthat are incident at the vertex
v, such that the set of all edge labels and the induced veteXslas{1,2,3,--- ,p+¢}. A
graph that admits such labeling is known as Super Vertex Meaph (SVM). Super vertex
mean graphs can be viewed the dual of Super mean graphsjadlypecthe case oR2—
regular graphs like cycles;,, (n > 3). In this sense our study is an extension work of these
two concepts; Vertex mean labeling and Super mean labebinger vertex mean behaviour
of many standard graphs has been studied and recorded thékis. Attempt is also made
to construct new types of Super Vertex Mean graphs and celatecepts pertaining to
graph labeling techniques.

The thesis is presented in seven chapters. The first chapts g few preliminary

concepts in graph theory and in the field of graph labelinghoddt that are needed in the

v



upcoming chapters. For the terminologies that are not @Xglimentioned here, a humble
request is made to refer Bondy and Murty [5], Gary Chartand @] \&/est [35].

Chapter 2 introduces the subject matter of the thesis andedefite concept: Super
Vertex Mean labeling. As no tree is an Super Vertex Mean (S\gk&ph we begin our
discussion with cycle§’,, (n > 3) and fansF,,, (n > 2) and a variety of ways a cycle can be
labeled in such a fashion. We also define the concept c8llgetr Vertex Mean Numbef
a graphG, inspired by the similar concepts namely, mean number apedrsuean number
that are already in the literature [33] and [24].

In Chapter 3, we study graphs that admit super vertex meatiigbédere we present
and prove that cyclic snakes(’,, (n > 3) of a particular category are SVM graphs. Every
cyclic snake is represented by a unique string of integelss fiypical category of snakes
contains strings in which each integer is 1.

Chapter 4 deals with linear cyclic snakes, of which all of theme SVM graphs. Linear
cyclic snake is a cyclic snake whose string contains integach of which is equal tpZ |,
wheren is the order of the individual constituent cycle in the cganake.

In Chapter 5, our investigation continues on a third type alicysnake known as edge
linked cyclic snakg EL(kC,,)). In his Ph.D. thesis, of 2013, Seenivasan [30] has defined
edge linked cyclic snake as an edge analogué@f snakes. He has generalized edge
linked cyclic snake and analysed the conditions under witef are mean graphs. Here we
continue our quest by investigating these graphs in thereékuper vertex mean labeling.

Chapter 6 deals with SVM behaviour of all the graphs up to osdand all the regular
graphs up to order 7. In doing so we have attempted to provedib@int union of SVM
graphs is SVM graph. The converse of the above fact is notasdg is not a SVM graph
but its union with any cycle, including with itsel2(y), is a SVM graph.

Chapter 7 goes one step ahead of what has been proved in theugretapter 6 and
brings in a new result that disjoint union of any type and nandf cycles of any order is a
SVM graph. In this chapter a method of labeling such uniorrapgs is described. Attempts
are also made to provE? (n > 3) and graphs obtained frof,, (n > 4), by joining two

vertices ofC,,, which are of certain distance apart, with a chord, are SVapgs.
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Chapter 1

Preliminaries

In this chapter we list some basic concepts of our area of/swigich are needed in the
subsequent chapters. Terms and terminologies connedie&vaph theory and labeling are

discussed at length here. For concepts in graph theorye#tker can refer to [5].

1.1 Terms in Graph Theory

Definition 1.1.1. A graphG is a triple consisting of a finite non empty set, called theeser
set of G and is denoted by’ (&), of objects called vertices (also called points or nodes),
a(possibly empty) set called the edge set denotefi(ly) of two element subsets bf(G)
called edges(or lines), and an incidence functigg, that associates with each edge two

vertices (not necessarily distinct) called endpoints.

The number of vertices in a graggh is called its order, and the number of edges is its
size. In general, for a grapfl we usep to denote its order ang for its size. A graph of
orderp and size; is called a(p, ¢)—graph.

If e is an edge and andv are vertices of a grap&y' such that)c(e) = uv, thene is
said to joinu andv, and the vertices, andv are called the ends @f When a vertex is
an endpoint of some edgewe say that is incident with the vertex and thatv is incident

with the edge:. Two verticesu andwv of a graphG is said to be adjacent if there exists an



edgee € E(G) such thats(e) = uv. Two edges are said to be adjacent if they have a
common end vertex.

If e is an edge from a vertex to itself, then it is called a loop on the vertex The
incidence function) need not be one-one. Therefore, it is possibleythée;) = g (es).
Thene; ande, are called parallel edges. A vertexof graphG is called an isolated vertex
if it is not incident with any edge id-. A graph is called simple if it has no loops and no
parallel edges. It is possible that a grapltan have directed edges or arcs. Such a graph is
known as directed graph or Digraph. The graphs considenexvii#é be finite, undirected

and simple.

Definition 1.1.2. The degree of a vertaxof G is the number of edges incident on it and is
denoted byl(v). A vertex with degree zero is called an isolated vertex; agxentith degree
one is a pendant vertex or a leaf. The unique edge that isemtigith a pendant vertex is a
pendant edge. A vertex with odd degree is an odd vertex anavittein even degree is an

even vertex.

Throughout this thesis the lettéf denotes a graph. Moreover, when there is no scope
of ambiguity, the lettet7 is omitted from graph-theoretic symbols and write, for epéan

andE instead ofl’(G) and E(G) respectively.

Definition 1.1.3. A walk in a graph is finite non empty sequence whose terms are
alternatively vertices and edges. If the edges of a walk astndit, then the walk is called a
trail and in addition, if the vertices are distinct then the lw# known as a path. A path
with n vertices is denoted b¥,,. A walk, trail or path is called trivial if it has only one

vertex and no edges.

Definition 1.1.4. If in a u — v walku = v then we say that the walk is closed. A non-trivial
closed trail is called a circuit. A non-trivial closed traiih a graph( is called a cycle if its
origin and internal vertices are distinct. In detail, theoskd trailC' = vivy - -v,v1 IS @
cycle ifC' has at least one edge andg, v-, - - - , v,, are distinct vertices. A cycle withhedges

is ann—cycle. Ann—cycle is called odd or even depending on whethés odd or even



respectively. Am—cycle is commonly denoted by,. Every cycle is a circuit, but a circuit

need not be a cycle.

Definition 1.1.5. Let v and v be two vertices of a grapli’. The vertexu is said to be
connected to the vertexif there exists a« — v walk in G. The graph itself is said to be
connected if for every two pair, v of vertices of there is au — v walk in G. Otherwise

graphd is said to be disconnected.

Definition 1.1.6. For a non-trivial graphG and a pairu, v of vertices ofGz, the distance
between: andv is the length of the shortest— v path inG, if it exists. It is denoted by

dg(u,v). If G has no such. — v path, then we definé; (u, v) = cc.

Definition 1.1.7. A graph that is connected and has no cycles is known as a treety Ev

non-trivial tree has at least two pendant vertices.

Definition 1.1.8. A graph G, = (V4, E;) is said to be isomorphic tos, = (V4, Es) if
there is a one-to-one correspondence between the verteXsatsd 1, and a one-to-one
correspondence between the edge #gtaind F, in such a way that it; is an edge with
end vertices;; andw; in G then corresponding edgg in G5 has its end vertices, andv,

in G, which correspond ta;; and v, respectively. Such a pair of correspondence is called

graph isomorphism.

Definition 1.1.9. A complete graph of ordet, denoted byi, is a simple graph in which
each pair of distinct vertices is joined by an edge. Thus,apgmwithn vertices is complete

if it has as many as possible edges, provided there are nslang no multiple edges.

Definition 1.1.10. Two graphsG; and GG, are said to disjoint if they have no vertex in

common, and they are edge disjoint if they have no edge in cornm

Definition 1.1.11. LetG; and G, be two graphs, the uniofd; U G5 is a graphG with vertex
set consisting of all those vertices which are eitheéinor GG, (or both) and with edge set
consisting of all those edges which are eithetinor G, (or both). The disjoint union af

copies of a graplts is denoted bynG.



Definition 1.1.12. LetG = (V, E¢) and H = (Vy, Ey) be two graphs. The direct product
of G and H, G x H, whose vertex set is the Cartesian produ¢tG x H) = Vg x Vg =
{(z,y) : = € Vg,y € Vy} and whose edges are given By, y = {(z,y), (2/,y) : x = 2
and(y,y’) € Eyor (z,2') € Eg andy = y'}. The productP,, x P, is called a planar grid

and P, x P, is known as a ladder. The product, x P, is called a prism.

Definition 1.1.13. The Square of graph’ denoted by? has the same vertex set as that of

G and the two vertices are i if they are at a distance dfor 2 in G.

Definition 1.1.14. If for some positive inter, d(v) = r for every vertex of the graphG,
thenG is calledr—regular. A3-regular graph is also called a cubic graph. The complete
graph K, is (n — 1)- regular graph. The complete bipartite gragti, ,, on 2n vertices is

n-regular.

1.2 Labeling and Number Theoretic Terms

Definition 1.2.1. For non-empty setd and B, a functionf from A to B, writtenasf : A —
B, is a relation fromA to B in which each element of appears as the first coordinate in
exactly one ordered pair. If the ordered pdir,b) € f, then we writeh = f(a) andb is the

image ofa. The set of all images gfis called the range of.

Definition 1.2.2. A functionf : A — B, is injective (or one-to-one) if distinct elements of
A have distinct elements iB. Therefore,f is injective if for every two(distinct) elements
andas in A, it follows thatf(a,) # f(az).

Definition 1.2.3. A functionf : A — B, is surjective (or onto) if every element Bfis the

image of some element &f i.e., if the range of is B.

Definition 1.2.4. A function that is both injective and surjective is calledijettive function

or a one-to-one correspondence.

Definition 1.2.5. A labeling of a graphz is a map that carries graph elements to integers.

Or in other words, a labeling of a grap is a function either from the set of vertices or the
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set of edges to a set of integers such that there is an inducetién from the set of edges or
the set of vertices respectively depending on the formetifum If the domain is the set of
vertices, then the labeling is known as vertex labeling, &tigei domain is the set of edges,

then the labeling is known as edge labeling.

Definition 1.2.6. Round of a number or rounding function of a numerical valueamse
replacing it by another value that is approximately equal bas a shorter, simpler or more
explicit representation. The round function is also called nearest integer function and is

defined such that Roundy(is the integer closest to.

Definition 1.2.7. The floor and ceiling functions map a real number to the grstate
proceeding or the least succeeding integer, respectibyre precisely,floor(z) = |z] is
the greatest integer less than or equaktandceiling(xz) = [x] is the least integer greater

than or equal tor.



Chapter 2

Super Vertex Mean Labeling

This chapter begins with the definition 8tiper Vertex Mean Labeling/hich is basically
an edge labeling of graphs. It can also be seen as a dual of Bigia@ Labeling introduced
by Ramya et.al in [27]. Therefore Super Mean Labeling is aat@m of both Super mean
labeling and the one introduced by Lourdusamy et.al in [{&], Vertex mean labeling. In

this chapter we examine Cycl&s,, n > 3 and FansF,,,n > 2.

Definition 2.0.8. A Super Vertex Mean labelinfjof a (p, q) - graphG(V, E) is defined as
an injection fromFE to the set{1,2,3,--- ,p + ¢} that induces for each vertexthe label
defined by the rulg¢”(v) = Round (%) , whereE, denotes the set of edges(itthat
are incident at the vertex, such that the set of all edge labels and the induced vertex{da

is{1,2,3,--- ,p+q}.

A graph that admits super vertex mean labeling is called &Sugrtex Mean, that is,
SVM) graph in short.

2.1 A Preliminary Observation

A graph having isolated vertices or leaves cannot be an SVidplyg For, ifdeg(v) = 0
for any vertexv of GG, the above definition is not defined andiifg(v) = 1 for any vertexv

of G, the induced vertex label remains the same as the label @&dfe that is incident on



the vertexv. Therefore, necessaritieg(v) > 2 for all verticesv of G. It is obvious that no

tree is an SVM - graph.

2.2 Super Vertex Mean Labeling of Cycles

Theorem 2.2.1.All the cycles except, are SVM - graphs.

Proof. Itis clear from the following illustration that’, is not SVM - graph.
lllustration: ForCy, p = 4 andq = 4.
FEYUF(V)={1,2,3,--- .p+q} ={1,2,3,4,5,6,7,8} .

It is obvious thatl and8 cannot be induced vertex labels, so necessarily belofigAo.
Since2 cannot be an edge label, it belongsftd’) and for2 to be a vertex label, it has to
labeled on a vertex on which the edges that are labebet3 lie. And s0,3 also belongs to
f(E).

Therefore,8 can be labeled on an edge that is adjacent to an edge labeletl The
following cases emerge:

Case 1:Let 8 be labeled on an edge adjacent to the edge lal3eled

Now, 7 cannot be labeled on any edges. The remaining options arembdabel either
4 or 5 on the fourth edge.

Case l.a..Let4 be labeled on the fourth edge. This is not an SVM - labelinghasrertices
that are incident on the edge labekedet the same induced lak&l

Case 1.b.:Let 5 be labeled on the fourth edge. This also is ruled out as oneeofertices
incident on the edge labelédyets the labes, which is contrary to the assumption tt3adhas
to be an edge label.

Thereforecase 1is not possible.

Case 2:Let 8 be labeled on an edge which is adjacent to the edge labeled

In this caser cannot be an edge label andrifvere to become an induced vertex label,
then one of the induced vertex labels gets repeated. Thertfigcase 2also is impossible.

The above investigation reveals that the cy¢las not an SVM - graph. So, let us assume

thatn # 4.



Now let us prove that’,,, exceptC, is an SVM - graph. There can be two cases
depending upon whetheris odd or even.

Case 3:n = 1(mod 2).

Let C, be an odd cycle withn vertices. Let{ej,es,---,¢e,} be the edge set and
{v1,v9,--- ,v,} be the vertex set of’,, such thate;, = v;v;,1,1 < ¢ < n—1 and
€, = Up1.

Letn = 2r 4+ 1. The edges of’, are labeled as follows:

2i—1 if1<¢<r+1
fles) =

21 fr+2<i<n

It is easy to observe thdtis injective. The induced vertex labels are given as foltows

.

n+1 ifi=1
fflvi)=1<2i—2 if2a<i<r+1

2i—1 ifr+2<i<n

\

Itis clear that,

FEYU (V) ={1,3,5,-- ,2r + 1,2r + 4,27 +6,--- ,2n — 2,20} U
{2r+2=n+1,24,--- 2r —2,2r,2r+3,2r+5,--- ,2n —3,2n — 1}
={1,3,---,2r+1=mn,2r+3,2r+5,...2n— 1} U
{2,4,--- 2r=n—-1n+1=2r+22r+4,2r+6,---,2n—1,2n}
={2i—1:1<i<n} U{2i:1<i<n}
={1,2,3,---,2n}

Case 4:n = 0(mod 2)

Let C, be an even cycle withh vertices. Let{ej,es,---,e,} be the edge set and

{v1,v9,- -+ ,v,} be the vertex set af’, such thak;, = v;v,41,1 <i <n— 1ande, = v,v;.



Letn = 2r. The edges of’,, are labeled as follows:
(

1 ifi=1

3 if 1 =2

7 ifi=3
flei) = <

49 — 4 if4<i<r4+1

dn —4i+5 fr+2<i<n-—-1

6 ifi=n
\
It is easy to observe thdtis injective. The induced vertex labels are given as foltows

/

4 if e =1
2 if 1 =2
5 if i =3
[P (v) =
47 — 6 if4<i<r4+1

dn —4i+7 fr+2<i<n-1

8 ifi=mn

\

Itis clear that,
f(EYU (V) ={1,3,7,12,16,- -+ ,4r dr — 3, 4r — 7,--- ,13,9,6} U
{4,2,5,10,14, - 4r —6,4r — 2,4r — 1,4r —5,--- , 15,11, 8}
={1,3,6,7,12,16,20,--- ,4r,9,13,--- ,4r — 7,4r — 3} U
{2,4,5,8,10,14,18,--- ,4r — 6,4r — 2,11,15,19,--- ,4r — 5,4r — 1}
={1,2,3,4,5,6,7,8} U{9,13,4r — 3} U{10,14, - ,4r —2} U
{11,15,--- ,4r —1} U{12,16,--- ,4r}
={1,2,3,--- ,4r — 3,4r — 2, 4r — 1,4r = 2n}
={1,2,3,---,2n}
Hence we have proved that all Cycl€s, exceptC; are Super Vertex Mean graphs. [

Example 2.2.2.Super vertex-mean labeling 6f and C, is shown in Figure2.1.



Figure 2.1: Super vertex mean labelingggfandC}.

2.3 Types of SVM - labeling of Cycles

Any cycleC,,, n > 3 andn # 4 can be SVM - labeled in a variety of ways. Therefore,

the need arises to categorize various types of these lglelin

Example 2.3.1.Figure 2.2 shows that'; can be labeled altogether as many adifferent

ways.

3 L4 3 6 3 6
® @ @ ®
L2
5 7 L4 7 o
6 11 8 13 9 12
7 10 9 12 11 14

Figure 2.2:C'; can be labeled altogether as many akfferent ways.
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Definition 2.3.2. s — type labeling of Cycles”,,,m > 3 andm # 4: We denote a super
vertex mean labeling : £ — {1,2,--- ,2m} of a cycleC,,, m > 3 andm # 4, that places
1 and 2m on two edges such that the number of internal vertices aloagstortest path

connecting these two edgessisass-type labeling, wheré < s < L%J

2.4 Types —labeling of all cycles

In order to define completely the various types of SVM - lamglof C,,n > 3 and
n # 4, we have to consider the following two cases, based on whettseodd or even.
Case 1:n = 1(mod 2)

Letn = 2r + 1. LetC,, be an odd cycle with vertices. Lefe;, es, - - ,e,} be the edge
set and{v,, v, - -+ ,v,} be the vertex set of’, such that; = v;v;,1, 1 <i <n—1and
en = vpv1. The type 1 - labeling of cyclé’,,, n > 3 is given as follows;

2i—1 if1<i<r—+1
file:) =

21 fr+2<i<n

or, when we reverse the order of naming the edges and venvesget equivalently

e

1 ifi=1

files) =< 4r —2i+6 if2<i<r+1

4r — 21 +5 fr+2<i<n.
\

Type 2 - labeling, then is defined as follows 13, n > 5;

(
1 ifi=1

45 — 2 if i =2
foled) = dr +4—-2i+4 if3<i<ra+1

dr+4—-2i+3 ifr4+2<i<2r

K87’—4@'4—7 ifi=n

11



Similarly type 3 - labeling of”,,, n» > 7 can be defined as,

(

1 if i =1
4i — 2 if2<i<3
fale)) = Qdr+6—-2i+4 fa<i<r+1

4r+6—-21+3 ifr+2<i<2r-—1

r —4i+7 if 2r <i <n.

And whenr = s, typer - labeling ofC),,n > 3 is defined as,

;

1 ifi=1

frlei) =< 4i—2 if2o<i<r+1

r—4i+7 ifr+2<¢<n.
\

or, equivalently

.

1 ifi =1
45 — 2 if2<i<r=s
frle) =< d4r+2r —2i+4 ifi=r+1=s+1

dr+2r—2i+3 fi=r+2=s5+2

k87’—4@'—1—7 ifr+3<i<n.

Therefore, when we consider all odd cycles and all the typabeor SVM - labeling in

general, we have the following theorem.

Theorem 2.4.1.Letn = 2r+ 1. LetC,, be an odd cycle with vertices. Lefe;, ey, -+ e, }
be the edge setard, vs, - - - , v, } be the vertex set @f,, such that; = v;v;41,1 <i < n—

1 ande, = v,v1. Thentype sl < s < r) SVM - labeling of cycl€,, n = 1(mod 2),n > 3

12



is given as follows:

1 ifi=1

4i — 2 if2<i<s
fslei) = Qar+2s—2i+4 ifs+1<i<r+1

r+2s—2i+3 ifr+2<i<2r—s+2

k87’—4@'4—7 if2r —s+3<i<n.

Proof. Let n = 1(mod 2), andn = 2r + 1. Let {ej,es,--- ,e,} be the edge set and

{v1,v9,--- ,v,} be the vertex set af’, such that; = v;v;11,1 <i <n—1ande, = v,v;.

The edges of’,, can types - labeled,1 < s < r, as given in the theorem.
injective function with rangd 1,2, --- ,2n}.
The induced vertex labeling is given as follows:
Whens = 1,

.
2 ifi=1
: n+1 ifi=2
fi(vi) =
dr — 2147 f3<i<r+2

\4r—22’+6 ifr+3<i<n.
It is evident that,
AEYU V) ={1,2n,2n —2,2n —5,--- . n+5n+3,nn—2n—4,
{2,n+1,2n—-1,2n—-3,--- ,;n+4,n+2,n—1,n—3,
={1,3,---,n,n+3,n+5,---,2n} U
{2,4,--- ,n—1,n+1,n+2,n+4,--- 2n—1}

= {1,2,3,---,2n}.

13
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Whens = r,

.
2 ifi=1

4 — 4 f2<i<r+1

[ (vi) =
dr+1=2n—1 ifi=r+2

k87‘—4@'—1—9 ifr+3<i<n.

Itis clear that,
(YU (V) ={1,6,10,--- ,2n,2n — 3,2n — 7,--- , 3} U
{2,4,8,--- 2n—2,2n—1,2n —5,--- ,9,5}
={1,3,7,---,2n—3,6,10,--- ,2n} U
{2,4,8,--- ,2n—2,2n—1,5,9,--- ,2n — 5}

= {1,2,3,4,5,--- ,2n—3,2n— 2,2n — 1,2n}.

Therefore in the more general case, the induced vertexdaloelgiven as follows:
(

2 if i =1
4i — 4 if2<i<s
2r + 2s ifi=s54+1

fi(vi) =
r +2s —2i+5 ifs+2<i<r+2

r +2s—2i+4 ifr+3<i<2r—s-+2

r—4i+9 if2r—s+3<i<n.
Clearly it is injective and
f(EYU f2(V) ={1,2,3,4,5,--- ,2n — 3,2n — 2,2n — 1, 2n}.
Since,
fs(E) ={1,6,10,--- ,4s —2,2n,2n — 2, -+ [ 2r + 25 + 2,2r + 2s — 1,
2r +2s—3,--+ ,4s+1,4s —1,4s —5,--- 7,3}
={1,3,6,7,10,11,14,15,--- ,4s — 5,45 — 2,45 — 1,45+ 1, - ,

2r +2s—3,2r+2s—1,2r+2s+2,--- ,2n —2,2n}

14



And,

foV)y=42,4,8,--- 4s —4,2r+2s,2n—1,2n—3,--- ,2r+2s+3,2r + 2s + 1,
2r +2s—2,2r+2s—4,--- ,4s+2,4s,4s — 3,4s — 7,--- ,9,5}
=1{2,4,5,8,9,--- ,4s —4,4s — 3,2r + 2s,4s,4s + 2, -+ ,2r + 25 — 2,

2r +2s+1,2r+2s+3,---,2n—3,2n — 1}
=1{2,4,5,8,9,12,13,--- ;4s —4,4s — 3,4s,4s + 2, -+ ,2r + 25 — 2,
2r +2s,2r+2s+1,2r+2s+3,--- ,2n —3,2n — 1}

Therefore,

fs(E)U fi(V)={1,2,3,4,5,--- ,2n — 3,2n — 2,2n — 1,2n}.

Hence we have proved that all odd cyctés can be s—type labeled, where< s < r and
n=2r+1. O]

Case 2:n = 0(mod 2) Let C,, be an even cycle and = 2r where,n > 6. (SinceC} is
not an SVM graph).

Let{es,es, - ,e,} be the edge setaddy, vs, - - - , v, } be the vertex set af',, such that
e; = vivir1, 1 <i <n—1ande, = v,v;.

Checking various possibilities we realize that type 1 - ladgels not possible for even
cycles. So we assume thaK s < r.

Type 2 - labeling of”,,, n > 6 is given as follows:

/

1 ifi=1

7 if i =2

4r —2i+6 f3<i<r
fales) =

dr —20+5 ifr4+1<i<2r—2

6 ifi=2r—1

3 if 1 = 2r.

\

15



Similarly, type 3 - labeling of”,,, n > 8 are as follows;

1

7

f3(€z’) =

9
6

3

\

12
4r — 20 + 8

dr — 2047

ifi=1
if i =2
if i =3
f4a<i<r

ifr+1<i<2r—3

ifi=2r—2
ifi=2r—1
if i =2r

And type 4 - labeling of”,,, n > 10 is given below;

(

1
7
44
4r
fales) =
4r
8r
6

3

\

and, whers = r, typer - labeling

fr(ei) =

— 20+ 10
—20+9

4141

is given by,

;

1
4 — 2

r+3t—3

\87"—424—3

16

ifi=1

ifi =2

if3<i<4
fo<i<r
ifr+1<i<2r—4
if2r —3<i<2r—2
ifi=2r—1

if 1 =2r

ifi=1
if2<i<r—1
ifr<i<r4+1

ifr+2<i<n.



And in general as in the previous case, for all even cyclg® 4y labeling is defined in

the following theorem:

Theorem 2.4.2.Letn = 2r. LetC, be an even cycle with vertices. Let{e;, ey, -+ ,e,}
be the edge set af’, such thate; = vv;.1,1 < i < n—1ande, = v,v;. Types -
(2<s<r—1)SVM -labeling o}, n = 0(mod 2),n > 6, is given as follows:

(

1 ifi =1
7 ifi =2
44 if3<i<s

fole)) =< dr —2i+25+2 ifs+1<i<r
dr — 21 +2s+1 ifr4+1<i<2r—s
r—4i+1 if2r—s+1<:<2r—2

6r —3i+3 if2r—1<:<n

and, whers = r, typer - labeling is given by,

(

1 ifi=1
4 — 2 if2<i<r-—1

r+3i—-3 ifr<i<r+1

\81”—42'—1—3 ifr+2<i<n.

Proof. Let n = 0(mod 2), andn = 2r. Let {ej,es,---,e,} be the edge set and
{v1,v9,- -+ ,v,} be the vertex set af’, such that, = v;v,,1,1 <i <n— 1ande, = v,v;.

Case 1 When2 < s < r — 1, the edges of’,,,n > 6 can be types - labeled as given

17



below:

fs(ei)

7

43

dr — 21+ 25+ 2
dr — 21 +2s+1
8r—4i+1

6r — 31+ 3

\

ifi=1
if i =2
if3<i<s

fs+1<i<r
fr+1<i<2r-—s
if2r —s+1<¢<2r—2

if2r—1<i<n

Clearly f, is an injective function with rangé€l, 2, ..., 2n}. The induced vertex labeling

is given as follows:

Whens =2

[ (i) =

2

2r +4

And whens > 3, we have

6r —3t+5
2
20+4

fo(vi) = 4i—2

2r + 2s

dr — 20+ 2s +
\

18

if1<i<2

ifi =3

dr —2i+2s+3 if4<i<r+1

dr —214+2s+2 ifr+2<i<2r—2

if2r—1<i<n

if1<i<2
ifi=3

if4<i<s
ifi=s+1

3 fs+2<i<r+1



(

dr — 21 +2s+2 ifr+2<i<2r—s

. 4s — 1 ifi=2r—s+1

s(vl):
8r—4i+3 if2r —s+2<¢<2r—2
\6r—3i+5 if2r—1<i<n

Clearly it is an injective function and, it is also evidenttthahens = 2,

F(E) U fS(V) = {1,7,4r, 47 — 2, -+ 20 +6,2r +3,2r +1,--- ,9,6,3} U
{2,4,2r+4,4r —5,4r —3,--+ ,2r+5,2r +2,--- /10,8,5}
=1{1,2,3,4,5,6,7,8,9,--- ,4r — 3, 4r — 2, 4r — 1,4r}.

Andfor3 <s <r—1,

F(E)YU fA(V)={1,7,12,--- ;ds,4r,dr — 2, -+ [ 2r + 25+ 2,2r 4+ 25 — 1,

2r +2s—3,--- ,4s+3,4s+1,4s —3,4s —7,--- ,9,6,3} U
{2,4,10,14,18, -+ ;4s — 2,2r + 2s,4r — 1,4r — 3,--+ | 2r +2s + 1,
2r +2s —2,2r+2s —4,--- ,4s+2,4s — 1,4s — 5,4s — 9,--- ,11,8,5}

={1,3,6,7,9,13,--- ,4s — 7,45 — 3,12, 16, -+ ,4s,4r dr — 2, |
2r +2s+2,2r +2s—1,2r+2s—3,--- ,4s+3,4s + 1} U
(2,4,5,8,10,14,- - 4s — 2,11, 15, -+ ,4s — 9,45 — 5,45 — 1,45 + 2,
Ads, -+, 2r + 25 —4,2r + 25, 4r — 1,4r — 3,- -+ ,2r + 25+ 1}

— {1,2,3,4,5,6,7,8,9,10,- - ,4r — 2, 4r — 1,47},

Case 2:Whens = r, the edges of’,,, n > 6 can be type- - labeled as given below:

(

1 ifi=1
44 — 2 f2<i<r-—1
fr(ei) =
r+3i—3 ifr<i<r+1
\8T—42'+3 ifr+2<i<n.
Clearly, f, is an injective function with rang¢1,2,3,--- ,2n}. The induced vertex
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labeling is given as follows:

2i if1<i<?2

4i —4 if3<i<r
fi(vi) = 4r -1 ifi=r+1

4r —2 ifi=r-+2

r—4i+5 ifr+3<i<n.

Itis clear now that,

f(EYU (V) ={1,2,3,--- ,2n.— 2,2n — 1,2n}.
Since,
fr(E) ={1,6,10,--- ,4r — 6,4r — 3,4r,4r — 5,4r — 9,4r — 13,--- ,7,3}.
(V) =42,4,812,--- 4r —4,4r — 1,4r — 2,4r — 7, 4r — 11,--- ,9,5}.
Hence we have proved that all even cyoles can bes-type, (| < s < r,n > 6 and
n = 2r), SVM labeled. O

Theorem 2.4.3.The ladderL,, = P, x P,, wheren > 3 is SVM.

PrOOf. LetV(Pn X PQ) = {ul, U, " ,Un} U {’Ul, (T ,Un} andE(Pn X PQ) = {Uiui+1 :
1<i<n—1} U{vvis1:1<i<n—1}U{uw; : 1 <i<n}. We note that the order of
L, is 2n and the size i8n — 2.

The edges of.,, are labeled as follows:

(

3 ifi=1
fluuis) =45 —1 ifiisevenor =n — 1

Y, if 1isodd and # 1 andi # n — 1.

\

Sn—2 ifi=n—1
f(viUiJrl):
50+2 ifi#n—1.
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1 ifi=1
5 ifi=2
f(uivi) = ¢5;—6 ifiisevenand #2 orn

5t —5 ifiisoddand # 1orn

bn—4 ifi=n.
\
It can easily be observed thats injective. The induced vertex labels are as follows;

(

2 ifi=1
folui) =<5i—4 if2<i<n—1
5n—5 ifi=n.
\

(

4 ifi=1
ffvi)=4951—-2 if2<i<n-—1

bn—3 ifi=n.

\

Itis clear thatf(E) U f*(V) ={1,2,--- ,5n — 2}.
Since,
f(E)=1{3,9,19,--- ,5n — 6(if nis odd), 5n — 11(if nis even } U
{15,25,--- ,5n — 10(if n is odd), 5n — 15(if nis even} U
{7,12,17,--- ;bn —8,bn — 7} U
{1,5,10,20,--- ,5n — 15(if nis odd), 5n — 10(if n is even} U
{14,24,--- ,5bn — 11(if n is 0dd), 5bn — 16(if n is ever), 5n — 4}.
and,f*(V) = {2,6,11,--- ,5n — 9,5n — 5,4,8,13,--- ,5n — 7,5n — 3}
Thus it is easy to verify, in both cases, that the above meeatidabeling is SVM -

labeling. Hence the theorem. O

Example 2.4.4.SVM labeling ofL; and Lg are shown in Figure.3.
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2 (6) (11\ (16) 2
| SI lI 13[ )
4 8 1 1 2
7 U 12 U 17 U 23
3 15 19 25 29 34
2 (6 (11\ (16 (21\ (26 31\ 3
1 5 :Eo 134 :Eo j;j4 Eo ’

4 8 1 2 3 3

1 2
7 U 12 U 17 U 22 \U 27 U 32 U 38

Figure 2.3: SVM labeling of.; and Lg are shown.

2.5 Fans ¢, n > 2)

Definition 2.5.1. The fanF,, (n > 2) is obtained by joining all vertices of a path, to a

further vertex called center, and containst 1 vertices an®n — 1 edges.

The edges of the path in a fan are named. < ¢ < n — 1, whereas the vertices of
the path in a fan are nameg, 1 < i < n. The center vertex is namedand the edges

connecting center and the vertices of the path are named i < n.

2.6 Fans ¢, n > 2) and their SVM - Behaviour

We discuss the SVM - behaviour of fans in the following thieearems.
Theorem 2.6.1.Fans (¢, n > 2) are SVM - graphs, when = 1(mod 2).

Proof. Let (£, n > 2) be a fan, wheres = 1(mod 2). Letn = 2r — 1, r > 2. We give

below the SVM - labeling of; and £ in Figure2.4.
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Figure 2.4: Super vertex-mean labelingg-gfand F.

Whenn > 7, definef : E(F,) — {1,2,3,...,3n} as follows:

(
1, if =1,
3i—1, if2<i<r—2
3, if i —r— 1,
fles) =
3i—2, ifi=r,
3, ifr+1<i<n—2
3i+1, ifi—n—1.
\
)
3, if1<i<r—2
31, fi=r—1,
f(si) =

i+1, ifr<i<n-—2,

3i, ifn—-—1<i<n.

The induced vertex labels are found to be as follows:

(

2, if i =1,

ffui)=93i—2, if2<i<r—1,

3i—1, ifr<i<n.
\
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fe) =3r
Remark: While computing the value of“(c), the exact value of it, without rounding off is
found to be3r + (%-2) for eachn > 7. While rounding off, the value of’(c) remains3r,
becauséﬁ never attaing.5 as"Q—jf is a converging function and converge%to
Further it can be easily verified thats a Super Vertex Mean labeling as it is an injective
mapping and the set of edge labels and induced vertex labglsd, 3, ...,3n}. Therefore
F, n>2andn = 1(mod 2) is SVM. O

Example 2.6.2.Super vertex-mean labeling 615 is shown in Figure2.5.

37 33 30

Figure 2.5:F3 is an SVM.

Theorem 2.6.3.Fans (¢}, n > 2) are SVM graphs, when = 2(mod 4).

Proof. Let (F,,, n > 2) be a fan, where = 2(mod 4). The SVM labeling off,, Fs and Fi

are given in Figure.6.
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Figure 2.6: Super vertex-mean labelingsef F; and F.

Whenn > 14, definef : E(F,) — {1,2,3,...,3n} as follows:

1, if =1,

3i—1, if2<i<2—1,
34, if i =12,

3i+6, ifi=2+1,
fle)=q3i—2, ifi=2+2,

3i—1, ifi="2+3,

31, if5+4<i<n-2,

31, if i=n—1andn = 14,

[ 3+ 1, if i=n—1andn > 18.
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31, if1<i<2—1,
3i—1, ifi=2,

3i—2, ifi=2+1,

3i—1, ifi=2+2,

3i+1, f2+3<i<n-—2,
3i+1, ifi=n—1andn = 14,

34, if i =n — 1 andn > 18

3i, if i =n.
\

The induced vertex labels are found to be as follows:

(

3i—2, if2a<i<z
fr(vi) = 4 3, if241<i<®42,
3i—2, ifi=2+3,

3i—1, f5+4<i<n

o) =

Remark: The real value off”(c), without rounding off is®%= — 0.5 + (2;2%) for each

n > 18. While rounding off, the value of"(c) remains®s**, becausé;=° never attaing.5
as";—n16 is a converging function and converge%to

Also it can be easily verified that is a Super Vertex Mean labeling as it is an injective
function andf(E(F,)) U f*(V(F,)) is {1,2,3,...,3n}. ThereforeF,, n > 2 andn =
2(mod 4) is SVM. O

Example 2.6.4.Figure 2.7 gives Super vertex-mean labelingiat.

Theorem 2.6.5.Fans (¢, n > 2) are SVM graphs, when = 0(mod 4).
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52 48 45

Figure 2.7:Fis is an SVM.

Proof. Let (F,,, n > 2) be a fan, where = 0(mod 4). The SVM labeling off} is illustrated
in Figure2.8.
Whenn > 8, definef : E(F,) — {1,2,3,...,3n} as follows:

(

1, if i =1,

3i—1, if2<i<?

flei) =93i+4, ifi=2+1,
31, if 5 +2<i<n-2,

34, if1<i<?

3i+1, ifi=2+
3i—4, ifi=%+2, andn =8orl2,

f(si) =

3i—5, ifi=2+

3i+1, if24+3<i<n-2

3i, ifn—1<i<n.




Figure 2.8: Super vertex-mean labelingigf

The induced vertex labels are found to be as follows:

(

2, ifi=1,
3i—2, if2<i< 3,

[ (vi) =
31, ifi=5%+1,
\32’—1, if 5 +2<i<n.

L2 if n=8orl2,
fole) =

el if n > 16.

Remark: As in the previous casg the real value off”(c), without rounding off is*~t* —

0.5+ (%529) for eachn > 16. While rounding off, the value of’(c) remains®.t*, because

n—10 never attain®.5 as”; is a converging function and convergesito
It is an easy exercise to verify thdtis a Super Vertex Mean labeling. is an injective
function and the union of edge labels and induced vertexdab¢l, 2, 3, ..., 3n}. Therefore

F,, n>2andn = 0(mod 4) is SVM. O

Example 2.6.6.Super vertex-mean labeling 6f, and Fi4 is shown in Figure2.9.

2.7 Super Vertex Mean Number

The concept of Super Vertex Mean Number arises from theeeartincepts such as,

Mean Number, Super Mean Number etc. M.Somasundaram and fajPawe introduced
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Figure 2.9: Super vertex-mean labelingfgf and F;.

the term Mean Number of a graph [33] and they have found thenmeaber of many
standard graphs. Later on, A.Nagarajan et.al. introduced¢doncept Super Mean Number
of a graph [24] and proved the existence of it for any graph ibgifig out the limit values
of it. Encouraged by their works we introduce this new conedpich we like to name as

Super Vertex Mean Number or SVM - Number.

Definition 2.7.1. Let f be a an injective function of @, q) - graphG(V, E) defined from¥

to the set{1,2,3,--- ,n} that induces for each vertexthe label defined by the rulg’(v)

= Round (%) whereFE, denotes the set of edgesifthat are incident at the vertex
v. Letf(E)U f(V) C {1,2,3,--- ,n}. If nis the smallest positive integer satisfying these
conditions together with the condition that all the vertekdls as well as the edge labels
are distinct, them is called the Super Vertex Mean Number (or SVM - number) ofrdnehg

G(V, E), and is denoted byV,,(G).

2.7.1 Observation

Itis observed that'V,,(G) = p+ q, for all SVM graphs whose order ip and size ig;.
And for other graphs$p, q) - graphG, SV,,,(G) > p + q + 1. Therefore the lower limit
of SV,,(G), for any graphGG is p + q.

29



For graphs containing an isolated vertex or a leaf, the Supeex Mean Number does

not exist. i.e., for such grapfis, SV,,(G) = co. Therefore, for anyp, q) — graphG,

p+q<SV,(G) < oo

Example 2.7.2.In Figure 2.10., it is shown that the SVM - number®@f, SV,,(Cy) = 9.

Figure 2.10:5V,,,(Cy) is 9

2.8 Conclusion

While analyzing the Super Vertex Mean labeling of Cyctés, we observe that the ideal
situation would have been that the sum of all the edge labdi®tequal to the sum of all
vertex labels, as the induced vertex labels are the aveddgjes two edge labels of the edges
that are incident on the vertex and each edge is consideree twobtain the induced vertex
labels, since each cycle iaregular graph.

But we notice that in the case of odd cycl€s,, n = 1(mod 2), be it any type of
SVM labeling, there are exactly two vertices which have sedgjes incident on it, that are
labeled with two integers one of which is odd and the othewéne Therefore the induced
vertex labels of these two vertices &6 each more than the actual average of the labels of
the incident edges on it, as per the definition of the SVM lalge{due to the rounding off

factor). When we sum up all the induced vertex labels, we gemntager which is exactly
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one more than the sum of all the edge labels. Or in other wathits sum of all induced
vertex labels i$).5 more than the half of the sum of fir8t positive integers. Similarly the
sum of all edge labels &5 less than the half of the sum of the figst positive integers.

We also know that the half of the sum the of fi2st positive integers is

(2n)(2n + 1)
4

For example, type 2 labeling @f;, where 2n = 10, and
Half of the sum of firstl0 positive integers =

10 x 11
4

=275

The sum of the vertex labels2s+ 4 + 8 + 9 + 5 = 28, and
The sum of the edge labelslis+ 6 + 10 + 7+ 3 = 27.
Therefore, the sum of the vertex labels f6r,n = 1(mod 2), is given by the following
equation,
i [o(v) = (M +0.5)
=1
and,
the sum of the edge labels f6f,, n = 1(mod 2), is
3 fe) = (20D g5,
=1
On the same note, for even cyclés,, n = 0(mod 2), there are exactly vertices which
have edges incident on them in such a manner that they arnedalwéh integers of which
one is odd and the other is even, resulting in an increagarothe sum of the vertex labels
to that of the edge labels.
Therefore, sum of the edge labels = sum of the vertex labgls
Also, sum of the firsn positive integers £G4

So, sum of the vertex labels w

(2n)(2n+1)
2

- sum of the edge labels
ie.,= - sum of the vertex labels 2
i.e.,2x sum of the vertex labets M2+l | o

Therefore the sum of the vertex labels @f,n = 0(mod 2), is given by the following
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equation,

S iy = (B2 D Ly

4
=1
and sum of the edge labels 6f,, » = 0(mod 2) is

if(ei) _ ((2n)(2n+1) ),

, 4
=1

We conclude by stating that the above equations are not isuffi®ut necessary
conditions for a set of integers from the set of fiéstpositive integers to be the edge label
set, f(E) or the induced vertex label sef? (V') of a Super Vertex Mean labeling of any

type for any Cycle’,,. It is given as follows,

)
(et —0.5) if n = 1(mod 2)

fles) =
; (BBt 1) if n=0(mod 2).

k 4

(% +0.5) if n=1(mod 2)

Zf”(vz‘) =

Also all the fans £, n > 2) are SVM graphs. They are categorized into three cases,

(w +1) if n=0(mod2).
of which the first includes fans whoseis odd and the last two cases together form those
whosen is even. The reader is further encouraged to explore thelpisess of proving that

all wheels(W,, n > 3) are SVM graphs. The wheé&V,, n > 3 is obtained by joining all
vertices of a cycle”, to a further vertex called center, and containg 1 vertices an®n

edges. Wheels have a lot in common with fans when we study $hWé - behaviour.
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Chapter 3

Cyclic Snakes as SVM - graphs

A chain of cycles is known as a cyclic snake. Cyclic snakes @odnstructed in a
variety of ways. This chapter presents one type of cyclikesand proves that all of them
are SVM -graphs. Before entering into the results, we defiegehm Cyclic Snakes and

introduce the type that we examine in this chapter.

3.1 Cyclic Snakes

Definition 3.1.1. A k£C,, - snake has been defined as a connected graph in which all the
blocks are isomorphic to the cydlé, and the block-cut point graph is a path whereP is

the path of minimum length that contains all the cut vertimles % C,, - snake. Barrientos [4]

has proved that anyC',, — snake is represented by a string ss, s3, - - - , sx_o Of integers of
lengthk — 2, where the' integer,s; on the string is the distance betwe&hand: + 1 cut

vertices along the path?, from one extreme and is taken fragfp = {1,2,3,-- -, ng }.

Remark: The strings obtained for both the extremes are assumed helsaime. In this

chapter we consider only those Cyclic snakes wjth:- 1, forall 1 <i < k — 2.

3.1.1 Known Results

e Result 1. All the cycles except’; are SVM - graphs [Theorem 2.2.1]
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e Result 2. All odd cycles can be SVM - labeled as many@sj different ways and
every even cycle, except,, can have(LgJ — 1) types of SVM - labeling [Theorem
2.4.1 & Theorem 2.4.2]

3.1.2 Triangular Snakes

Theorem 3.1.2.A triangular snake wittk blocks is an SVM - graph

Proof. Let £C3 be a triangular snake with blocks withp vertices and; edges. Thep =
2k + 1landqg = 3k. LetV(kC3) = {u; : 1 <i < k+1}U{y; : 1 <i < k} and
E(kCs) = {uuitr, uvi, viuipg 0 1 <i < k}.

The edges ok(C; are labeled as follows:

1 ifi=1

51 if 7isevenand # k

fuguigr) = <
5 —3 ifiisoddand # 1

\5l<:+1 if kisevenand =k

5 —3 if iis even

fuv;) =
5 —2 ifiis odd
51 if i is odd and # k
flviuigr) = { 5i — 1 if i is even

5k+1 if kisodd and = k&

\

Then, the induced vertex labels are as follows:

(

2 if i =1
5i—4 if2<i<k

5 —6 ifi=k+1andkis odd

\5@'—5 if i=%k+1andKkis even
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;

51— 2 if iiseven
f(vi) =1{5i—1 ifiisoddand # k

5k if - = kis odd

\

It can be easily verified that is injective and the set of edge labels and induced vertex
labels is{1,2, ....,5k + 1}. ]

Example 3.1.3.Super vertex mean labeling of triangular snakes is showngués. 1.

Figure 3.1: Super vertex mean labeling of Triangular snakes

3.1.3 Quadrilateral Snakes
Theorem 3.1.4.Quadrilateral snakes witlk > 2 blocks and each; = 1 are SVM - graphs

Proof. Let kC, be a quadrilateral snake with(kCy) = {u; : 1 < i < k+ 1} U {u;, w; :
1 <1< ]{?} andE(kZO4) = {uiuiﬂ,uivi,uiﬂwi,viwi 1< < /{Z} Thenp =3k+1and
q = 4k.
Definef : E(kCy) — {1,2,3,..., 7k + 1} as follows:

71 ifl<i<k-1

f(uiuiJrl) =
Tk+1 ifi=k.
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3 ifi=~F
f(viw;) =
7i—3 if2<i<k.

Then, the induced vertex labels are as follows:

;

4 ifi=1
fU(w) = S 7k ifi=Fk+1

7i — 5 otherwise

2 ifi=1
fo(vi) =
7i — 4 otherwise
frlw)=Ti—2if1 <i<k.
It can be easily verified that is injective and the set of edge labels and induced vertex

labels is{1,2,3,...,7k + 1}. ]

Example 3.1.5.A Super vertex-mean labeling of a Quadrilateral snaké@, is shown in

Figure 3.2.
18
17 19
15 20
14 29
(16)
8 13 22 27

10 12

11 25

Figure 3.2: A Super vertex-mean labeling of a Quadrilatenake 4C)
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3.2 Cyclic Snakes of cycles of higher orders

We proceed to prove that cyclic snakes of cycles of the othders are also SVM -

graphs.

3.2.1 Pentagonal Snakes

Theorem 3.2.1.Pentagonal snakes withblocks and each; = 1 are SVM -graphs.

Proof. Let kC'5 be a pentagonal snake withblocks ofCs.

LetV(kC5) ={v;;;1<i<k,1<j<5}and

E(kCs) = {ei; = vijvije @nde; s = v5v,151 <@ < k, 1 < j < 4}

Note thatv; 5 = v;41; for 1 < i < k — 1, and we refer this vertex ass throughout this
proof.

Now,p = 4k + 1, q = 5k andp + g = 9k + 1.

Definef : E(kCs) — {1,2,3,--- ,9k + 1} as follows,

)
2j — 1, ifi=1,andl < j <3
27, ifi=1 and4<;<5
fleiz) =
9 —9, if2<i<kandj=1
(97425 =9, if2<i<kand2 <j<5.

It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

;

n+1, ifi=1,andj=1

) 2j—2, ifi=1and2<;j <3
f(vig) =
2j—1, ifi=1, andj =4

(9i+3, f1<i<k-—landj=5
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;

9 — 17, if2<:<kandj=2

fPvij) =9i42j—10, f2<i<k and3<j<5

9k, if : =k, andj = 5.
\

Clearly it can be proved that the union of the set of edge ladedsthe induced vertex
labels is{1,2,3,--- ,9k + 1}.

Therefore, pentagonal snakeS; with eachs; = 1 are Super Vertex Mean graphs. [

Example 3.2.2.In Figure 3.3. we have an SVM labeling of a pentagonal snaked\tbcks.

Figure 3.3: Super vertex-mean labeling of a Pentagonaleswék 4 blocks

3.2.2 Hexagonal Snakes

Theorem 3.2.3.Hexagonal snakes with eash= 1,1 < i < k£ — 2 are Super Vertex Mean

Graphs.

Proof. Let kCs be a hexagonal snake wikhblocks of Cs.
LetV(kZCG) = {vi,j; 1< < ]f,l S] < 6} and
E(kCs) = {ei; = vijvije @nde; s = v6vi151 <@ < k, 1 < j < 5}

Note thatv; s = v;411 for 1 < i < k — 1, and we refer this vertex ass throughout this
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proof.
Now, p = bk + 1 andq = 6k andp + ¢ = 11k + 1.
Definef : E(G,) — {1,2,3,--- ,11k + 1} as follows,

p

9 — 37, ifi=1,andl <j <2
67 — 17, ifi=1 and3 <j <4
fleig) =4 27 — 35, ifi=1, and5<j <6
116 — 11, if2<i<k andj =1
| 11i+2j - 11, if2<i<k and2<j<6.

It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

;

11 — 37, if i =1, andl < j <3

65 — 20, ifi=1 and4 <j <5
) 115 + 3, if 1<i<k—1,andj =6
ff(vig) =

115 — 9, if 2<i <k, andj =2

11i42j—12, if2<i<k and3<j<5

11k, if i =k, andj = 6.

Clearly it can be proved that the union of the set of edge ladnatsthe induced vertex
labels is{1,2,3,--- , 11k 4+ 1}.

Therefore, hexagonal snakes witlblocks ofCs are Super Vertex Mean graphs. O

Example 3.2.4.SVM labeling of a hexagonal snake witiblocks is given in Figurg.4.

3.2.3 kC, Snakes;n > 7andn = 3(mod 4)

Theorem 3.2.5.Let kC,, be a cyclic snake with blocks ofC,,,n > 7 andn = 3(mod 4).
ThenkC,, is a Super Vertex Mean graph.
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16

17

19
20

Figure 3.4: Hexagonal snake witlblocks is SVM

Proof. Let kC,, be a cyclic snake witlk blocks ofC,,,n > 7 andn = 3(mod 4).

Letn = 2r + 1, andr = 2s + 1 so thatn = 4s + 3.

LetV(kC,) ={vi;;1 <i<k,1<j<n}and

E(kC,) ={ei; =vijvijr1 & ein=001;1 <i <k, 1<j<n-—1}

Note thatv;,, = v;111 for1 < i < k — 1, and we refer this vertex as,, throughout this
proof.

Now,p = (n — 1)k + 1landg =nkandp+q = (2n — 1)k + 1.

Definef : E(kC,) — {1,2,3,---,(2n — 1)k + 1} as follows,

(

2j — 1, ifi=1andl <j<r+1

27, ifi=1 andr+2<j<n
fleij) =19 (2n —1)i — (2n — 1), if2<i<kandj=1

(2n —1)i 4+ 2j — (2n), f2<i<kand2<j;j<r-—s

\(2n—1)2’—|—2j—(2n—1), if2<i<kandr-—s+1<j<n.
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2j — 1, ifi =1, andl < j < 2s+2
27, ifi=1 and2s+3 <j<4s+3
fleij) =S (8s+5)i — (8s + 5), if2<i<kandj=1

(8s+5)i+2j — (8s+6), if2<i<kand2<j<s+]1

(8s+5)i+2j—(8s+5), if2<i<kands+2<j<4s+3.

\

And, the induced vertex labels are as follows:

(

n+1, ifi=1, andj =1

25 — 2, ifi=1 and2<j<r+1

2j — 1, ifi=1landr4+2<j<n-1
frvig)=q(@2n—1)i+r+1, ifl<i<k—1landj=n

2n—1)yi+2j—2n+1), f2<i<kand2<j<r-—s
(

2n — 1)i + 25 — (2n), f2<i<kandr—s+1<j<n-1
\(2n—1)k’ if i =kandj =n.
(4s+4, ifi=1 andj =1
2j — 2, if i =1, and2 < j < 2s + 2
2j — 1, if i =1and2s+3<j <4s+2
=9 (8s+5)i+2s+2, ifl<i<k-—1landj=4s+3

(8s+5)i+2j—(8s+7), if2<i<kand2<j<s+1

(8s+5)i+2j — (8s+6), if2<i<kands+2<j<4s+2

(8s +5)k if i =Fkandj =4s+ 3.

(
We prove the theorem by using mathematical inductior.on

Whens = 1, = 3 andn = 7 and the cyclic snake is a heptagonal snake witycles
of C4.
Now, p = 7k + 1 andq = 7k andp + ¢ = 13k + 1.
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Definef : E(kC,) — {1,2,3,--- ,13k + 1} as follows,

(

2j — 1, ifi=1, andl < j <4
27, ifi=1,and5< ;<7
fleij) = € 13i — 13, if2<i<k, andj =1

13i+2j — 14, if2<i<k, andj =2

13i4+25—13, if2<i<k, and3<j<T.
\

It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

(

n+1, ifi=1,andj =1

2j — 2, ifi=1, and2<j <4

25 — 1, ifi=1,and5 <j <6
fr(vig) = € 13i + 14, ifl<i<k—1, andj =7

13i — 11, if2<i<k andj =2

13i+2j—14, if2<i<kand3<j<6

13k, ifi=Fk, andj = 7.

Clearly it can be proved that the union of the set of edge ladedsthe induced vertex
labels is{1,2,3,---,13k + 1}.
Let,
A ={2j—1,i=1&1<j <4},
Ay ={2j,i=1&5<j<T7},
A3 ={13i —13,2<i< k& j=1},
Ay ={13i+2j —14,2<i< k& j=2},

As={13i+2j—13,2<i<k&3<j<Th
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And let,

B1 = {8}7
B2 = {27476}7
B3 = {97 11}7

By = {17,30,43,56, - , 13k — 22,13k — 9},

Bs = {15,28,41, -+ , 13k — 24, 13k — 11},

Bs = {18,20,22,24, - , 13k — 8,13k — 6, 13k — 4, 13k — 2},
By = {13k}

AyUBy,UB UBsUAy={1,2,3,4---,11,12,14},
Az ={13,26,39,--- ,13k — 13},
Bs UA;UB,UBgUA; ={15,16,--- ,24,25,27,28, - - - ,
38,40, -+ 13k — 1,13k + 1},
AiUByUBUB3sUA; U A3 U Bs U AyU
B, U BgU A5 U By
={1,2,3,--- ,13k — 1,13k, 13k + 1}.
Thus the theorem is true when= 1.

Now we assume that the theorem is truedor 1 (i.e., forr — 2 andn — 4). The induction

hypothesis is that the edge labeling,
f:EkC,_y) —{1,2,3,---,(2n — 9k + 1},

defined as follows, is a Super Vertex Mean Labeling, whete 11 andn = 3(mod 4) and

k> 2.
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2j — 1, ifi=1,andl <j<r—1
27, if:=1 andr <j<n-—4
fleij) = q (2n —9)i — (2n —9), if 2<i<kandj=1

(2n—9)i+2j— (2n—8), if2<i<kand2<j<r—s-—1

(2n—9)i+2j—(2n—-9), f2<i<kandr—s<j<n-—4.

\

)
2j — 1, if i =1, andl < j < 2s
27, ifi=1 and2s+1<j<4s—1
=9 (8s—3)i — (8s — 3), if2<i<kandj=1

(8s—3)i+2j—(8s—2), if2<i<kand2<;j<s

K(855—3)z'+2j—(83—3), if2<i<kands+1<j<4s—1.
Now we prove that the result is true for ary If we replaces with s + 1 in the above
mappings we get,

;

2j — 1, ifi=1, andl < j < 2s+2
27, ifi=1 and2s+3 < j <4s+3
fleij) =S (8s+5)i — (8s + 5), if2<i<kandj=1

(8s+5)i+2j—(8s+6), if2<i<kand2<j<s+]1

(8s+5)i+2j — (8s+5), if2<i<kands+2<j<4s+3.

\

2j — 1, ifi=1,andl <j<r+1

27, ifi=1,andr+2<j<n
=4 (2n—-1)i—(2n-1), if2<i<kandj=1

(2n — 1)i + 25 — (2n), f2<i<kand2<;j<r-—s

k(2n—1)2’—1—2]’—(271—1), if2<i<kandr—s+1<j<n.
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And, the induced vertex label is,
(

4s + 4, if:=1, andj =1

2j — 2, if i =1, and2 < j < 2s + 2

2j — 1, if i = 1and2s +3 < j < 4s + 2
fP(vig) =< (8s +5)i + 25 + 2, if 1 <i<k—1landj=4s+3

8s+5)i+2]—(8+7), if2<i<kand2<j<s+1
(

(8s+5)i+2j—(8s+6), if2<i<kands+2<j<4s+2

\(8s+5)k if i =kandj =4s+ 3.
(n—l—l, if:=1,andj =1
2j — 2, ifi=1,and2<j<r+1
27 —1, fi=landr+2<j<n-1

2n—1)i+7+1, ifl<i<k-landj=n
2n—1)yi+2j—2n+1), f2<i<kand2<j<r-—s
(

2n — 1)i 4+ 25 — (2n), f2<i<kandr—s+1<j<n-1

k(271—1)]{: if i = kandj = n.
Itis clear thatf(E) U f*(V) ={1,2,3,--- ,(2n)k, (2n — 1)k, (2n — 1)k + 1}

Thus the theorem is proved by Mathematical Induction. O

Example 3.2.6.SVM Labeling of Undecagonal snake withlocks ofC'; is shown in Figure
3.5.

3.2.4 kC, Snakes;n > 8 andn = 0(mod 4)

Theorem 3.2.7.Let kC,, be a cyclic snake with blocks ofC,,,n > 8 andn = 0(mod 4).
Thenk(C,, is a Super Vertex Mean graph.
Proof. Let kC,, be a cyclic snake witlk blocks ofC,,, n > 8 andn = 0(mod 4).

Letn = 2r, andr = 2s so thatn = 4s.
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Figure 3.5: SVM labeling of an Undecagortél;;) snake withd blocks

LetV(kC,) ={vi;;1 <i<k,1<j<n}and

E(kC,) ={ei; =vijvijy1 & eip =00v1;1 <i <k, 1<j<n-—1}

Note thatv;,, = v;111 for 1 < i < k — 1, and we refer this vertex as,, throughout this
proof.

Now,p = (n — 1)k + 1andg =nkandp+q= (2n — 1)k + 1.
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Definef : E(kC,) — {1,2,3,---,(2n — 1)k + 1} as follows,

,

M —2j — 2, ifi=1, andl <j<r—4

2n — 25 — 3, fi=1,andr —-3<;<n-6

3n— 37 — 3, ifi=1,andn—-5<j<n-—4

1, ifi=1 andj=n—3
fleij) =<7, ifi=1, andj =n —2

dn — 25 — 2, ifi=1,andn—1<j<n

(2n — 1)i — (2n — 1), if2<i<kandj=1

(2n —1)i+ 25 — 2n, f2<i<kand2<j<s

\(2n—1)i—|—2j—(2n—1), if2<i<kands+1<j<n.

And, the induced vertex labels are as follows:

(2n—2j—1, ifi=1,andl <j <r—3

2n — 25 — 2, f:=1,,andr—2<j;<n-5

5, ifi=1 andj =n—4

8+ 2j — 2n, ifi=1,andn —3<j<n-—2
f'(ig) = n+4, ifi=1 andj=n—1

(2n —1)i+r, fl<i<k—1landj=n

(2n—1)i4+2j— (2n+1), f2<i<kand2<;j<s

(2n — 1)i + 25 — 2n, f2<i<kands+1<j;<n-—1

[ (2n — 1)k, if i = kandj = n.

It can be easily proved using mathematical inductiors@s in the above theorem that
the labelingf : E(kC,) — {1,2,3,...,(2n — 1)k + 1} is an SVM labeling.
Hint: Wherevern- andn appear, we need to change those variablessntsingn = 4s and

r = 2s. OJ
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Example 3.2.8.A Dodeagonal(C5) Snake withd blocks is an SVM graph as shown in
Figure 3.6.

@)

Figure 3.6: SVM labeling of a Dodecagorial;,) snake with4 blocks.

3.2.5 kC, Snakes;n > 9andn = 1(mod 4)

Theorem 3.2.9.Let kC,, be a cyclic snake with blocks ofC,,,n > 9 andn = 1(mod 4).
ThenkC, is a Super Vertex Mean graph.

Proof. Let kC,, be a cyclic snake witlk blocks ofC,,, n > 9 andn = 1(mod 4).
Letn = 2r + 1, andr = 2s so thatn = 4s + 1.
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LetV(kC,) ={vi;;1 <i<k,1<j<n}and

E(kC,) ={ei; =vijvijr1 & ein =001;1 <i <k, 1<j<n-—1}

Note thatv;,, = v;111 for 1 < i < k — 1, and we refer this vertex as,, throughout this
proof.

Now,p = (n — 1)k + 1 andg = nk andp+ ¢ = (2n — 1)k + 1.

Definef : E(kC,) — {1,2,3,---,(2n — 1)k + 1} as follows,

p

2j — 1, ifi=1, andl <j<r-+1

27, ifi=1 andr+2<j<n

(2n—1)i —2j — 8, f2<i<kandl<j<r—3
fleij) =

(2n — 1)i — 2j — 6, f2<i<kandr—2<j<n—7

(2n —1)i — 2n + 5, if2<i:<kandj=n—6,

(2n—1)i—2n+2j+1, if2<i<kandn—5<;j<n.

\
And, the induced vertex labels are as follows:

p

n+1, if:=1,andi =1

2j — 2, ifi=1 and2<j<r+1
27— 1, ifi=1andr+2<j;<n-1
3n + 4, fl<i<k—1landj=n

frui)) =9 @n—-1)yi—2j—7, f2<i<kand2<;j<r—3
(2n—1)i—2j—13, f2<i<kandr—2<;<n—6
(2n —1)i —n — 4, f2<i<kandj=n-5

(2n—1)yi+2j—2n, f2<i<kandn—4<j<n-1

| (2n — 1)k, if i = kandj = n.

It can be easily proved using mathematical inductiors @s in the above theorems that

the labelingf : E(kC,) — {1,2,3,...,(2n — 1)k + 1} is an SVM labeling. O
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Example 3.2.10.SVM labeling of a TridecagondlC,3) snake with2 blocks is shown in
Figure 3.7.

38 36 32 30 28

25

49@47@45@43@41 &
3 22
® @)
7 20
® ®
9 18
@) ®
11 15
12 14

13

Figure 3.7: SVM labeling of a Tridecagondl',;) snake with2 blocks.

3.2.6 kC, Snakes,n > 10 andn = 2(mod 4)

Theorem 3.2.11.LetkC,, be a cyclic snake with blocks ofC,,,n > 10 andn = 2(mod 4).
ThenkC,, is a Super Vertex Mean graph.

Proof. Let kC,, be a cyclic snake witlk blocks ofC,,,n > 10 andn = 2(mod 4).
Letn = 2r, andr = 2s + 1 so thatn = 4s + 2.
Let V(KC,) = {vij;1 <i <k, 1 <j<n}andE(kC,) = {e;; = v jvijt1 & ein =
VinUin;l <i <k, 1<j<n-—1}
Note thatv;,, = v;111 for 1 < i < k — 1, and we refer this vertex as,, throughout this

proof.
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Now,p = (n — 1)k + 1landg = nkandp+ ¢ = (2n — 1)k + 1.
Definef : E(kC,) — {1,2,3,---,(2n — 1)k + 1} as follows,

fleiy) =

2n — 25 — 2,
2n — 27 — 3,
3n—35 -9,
L,

7,

dn — 25 — 2,
2n — 1,
2n+ 25 — 2,
2n+25 — 1,
(2n —1)i + 3,

(2n —1)i +2j —2n — 1,

(2n —1)i +2j — 2n,

(2n—1)i+2j —2n+1,

(2n — 1)k +1,

fi=1,andl1 <j<r—4
ifi=1,andr—3<;<n-—6
ifi=1,andn—-5<j;<n-—4
ifi=1,andj =n—3
ifi=1,andj =n—2
ifi=1,andn—1<j<n
ifi=2,andj =1

ifi=2 and2<j<r—s
fi=2andr—s+1<j<n-1
f2<i<k—1landj=n
f3<i<kandl <j <2
f3<i<kand3<j<r-—s
f3<i<kandr—s+1<j<n-—1

if i =kandj = n.

And, the induced vertex labels are as follows:

(

om —2j — 1,
M —2j — 2,
f(vij) =95,
8+ 25 — 2n,
kn—|—4,

ifi=1 andl <j<r—3
fi=1,andr—-2<;<n-5
ifi=1andj =n—4
ifi=1,andn —3<j<n-—2

ifi=1 andj=n—1
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C2n—1)i+r+1, ifl1<i<k-—1landj=n

on +2j — 1, ifi=2 and2<;j<r—s
2n 425 — 2, ifi=2 andr—s+1<j<n-1
fvig) =19 ©2n—1)i+2n+2, if 3<i<kandj=2

2n—1)i+2j—2n—1, f3<i<kand3<j<r—s

(2n —1)i+2j — 2n, f3<i<kandr—s+1<j<n-1

\(271—1)/{:, if i = kandj = n.
It can be easily proved using mathematical inductiors @s in the above theorems that

the labelingf : E(kC,) — {1,2,3,...,(2n — 1)k + 1} is an SVM - labeling. O

Example 3.2.12.Tetradeagona(C},) snake with8 blocks is SVM as shown in Figuses.

3.3 Conclusion

In this chapter, we have proved that all the cyclic snakesSaper Vertex Mean graphs,
provided eaclhs; on the strings,, so, s3,- - - , sx_2 Which is used to representi@’,, cycle is
equal tol. Thiss; is the distance betweet' andi + 1" cut vertices along the pati®,
whereP is the path of minimum length that contains all the cut vesiof akC,, — snake,
starting from one extreme and is taken froin= {1,2,3,--- , | %]}.

In the case of Super Mean Labeling, the vertex analogue of S¥iVas easy to obtain
a general formula for cyclic snakes represented the sthing, ss, - - - , si_2, Where eacls;
need not be equal tb This is because when we calculate the induced edge labeldindi
the average of the labels of two vertices which are the enakpof the respective edge, we
need to only consider those two vertices. Therefore theageeremains the same as in the
case of cycles.

But for Super Vertex Mean labeling, when we find the inducedexelabeling of the
connecting vertices of a cyclic snake we have to consider édges that are incident on

those vertices to get the average. Thus it becomes prefiiyuttito obtain a general formula
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Figure 3.8: SVM labeling of a Tetradecagoi@l ;) snake with3 blocks.

for cyclic snakes represented the striagss, s3, - - - , sp_2, Where eachy; need not be equal
to 1. Another possibility in this area is to find out SVM - labelsgf cyclic graphs whose
eachs; is equal, and need not be equalltas we have proved in this paper.

Another possibility that emerges for further study is that tny to explore the SVM -
labeling of KC — snakes, which are defined as connecting graphs in whichdatie £
many blocks is isomorphic to a cydle, for somen and the block - cut point graph is a path.
As in the case okC,, - snakes, &C - snake too can be represented by a string of integers,
S1,82,+ ,Sk_o. THus, itis still an open problem to labek&’ — snake which has either the

same value or different values for eagh
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Chapter 4

Linear Cyclic Snakes as SVM - Graphs

Linear cyclic snakes are worthy of a special mentioning a&sdbnstituent cycles are
equally distanced from one another. In the previous chapteanave already defined Cyclic
snakes. Here we bring in the slight nuance that is found irchiagacteristic of linear cyclic

shnake.

4.1 Linear Cyclic Snakes

Definition 4.1.1. A kC,,— snake is said to bknear if each integers; of its string is equal to
5] -

Remark: The strings obtained from both the extremes are assumedielsame. A linear
cyclic snakekC,, is obtained fromk copies ofC,, by identifying the vertex; ., ; in thei*"
copy ofC,, at a vertex;.; ; in the (i + 1)”‘ copy ofC,,, wherel <i¢ < k—1andn = 2ror

n = 2r + 1, depending upon whetheris even or odd respectively. We refer this vertex as

v;4+1,1 throughout this chapter.

4.1.1 Known Result

¢ A linear triangular snake;C5 with & blocks is an SVM - graph.
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4.2 Linear Cyclic snakes of cycles of higher orders

Now we proceed to prove that other linear cyclic snakes t@oSarper Vertex Mean

Graphs.

4.2.1 Linear Quadrilateral Snake

Theorem 4.2.1.Linear Quadrilateral snakeg;C), with £ > 2 blocks are SVM - graphs.

Proof. A linear quadratic cyclic snakieC, is the graph obtained froik, £ > 2 copies ofC)
by identifying the vertex; ; in thei'" copy of C, at a vertexv; ; ; in the (i + 1)“‘ copy of
Cy,Wherel <i<k—1.

Let £C, be a linear quadrilateral snake withvertices and; edges. Themp = 3k + 1
andq = 4k. Suppose we name the vertices of the given linear quadalaseake in the
anti-clock wise direction, so that
V(kCy) ={vi;;1 <i<k,1<j<4}and
E(kCy) ={e;; = vijvij+1 ande; 4 = v;4v;1;1 <3 < k,1 < j <3}

Definef : E(kCy) — {1,2,3,...,7k + 1} as follows:
Whenl <i <k —1,andk > 2,

p

1, ifi=1,andj =1
7i—5, if2<i<k-—1,andj=1
fleij)=Q7i—1, if1<i<k—1, andj=2

71, ifl1<i<k-—1,andj =3

Ti—4, f1<i<k-1,andj=4.
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Wheni = k, k£ > 2, andk is even,

Th—6, ifj=1,

Th—3. ifj—2
fleij) =
Th—1, ifj=3,

[Tk 1, i =

When: = k, k > 3, andk is odd,

Th—5, ifj=1,

Th—2, ifj=2
fleij) =
Th+1, ifj=3,

(Th—4, ifj=4

It can be easily verified that is injective.
Then, the induced vertex labels are as follows:
Whenl <i <k —1,andk > 2,

(

2, ifi=1, andj =1,

) 7i—6, f2<i<k—1 andj=1,
[(vig) =
7i—3, f1<i<k-1,andj =2,

\71’—2, if1<i<k-—1, andj = 4.

When: = k, k > 2, andk is even,

(
Th—5, ifj=1,

) Th—4, if j—2,
[ (vig) =
Th—2, ifj=3

Tk, if j = 4.

\
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When: = k, k£ > 3, andk is odd,

(

Th—6, ifj=1,

) Th—3, ifj=2
f(vij) =
Tk i3

|7k — 1, if j =4.
It can be easily verified that the set of edge labels and irtluaatex labels is
{1,2,3,...,7k + 1} as follows;

Case 1 Whenk is even,
f(E)={1,6,7,3,9,13,14, 10, 16, 20, 21, 27, - - -,
Tk — 12,7k — 8,7k — 7,7k — 11,7k — 6,7k — 3,7k — 1,7k + 1}
And,
V) ={2,4,8,5,11,15,12,18,22,19, - - - ,
Tk — 10,7k — 5,7k — 9,7k — 4,7k — 2, 7k}
Therefore,
FEYU (V) ={1,2,3,4,--- , Tk — 12,7k — 11,7k — 10,7k — 9, Tk — 8,
Tk —7,7k — 6,7k — 5,17k — 4,7k — 3,7k — 2,7k — 2,7k, 7Tk + 1}.
Case 2 Whenk is odd,
f(BE)={1,6,7,3,9,13,--- , Tk — 12,7k — 8,7k — T,
Tk —11,7k — 5,7k — 2,7k 4+ 1,7k — 4}
And,

fV)=42,4,8,5--- 7k — 10,7k — 6,7k — 9,7k — 3,7k, 7k — 1}
Therefore,
FE)U fo(V)={1,2,3,4,--- , Tk — 12,7k — 11,7k — 10,7k — 9, Tk — 8,
Tk —7,7k — 6,7k — 5,17k — 4,7k — 3,7k — 2,7k — 2,7k, 7Tk + 1}.

In both the cases above, it has been proved that the labglidg kCy) — {1,2,--- ,Tk+1}

is a Super Vertex Mean labeling. O
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Example 4.2.2.Super vertex-mean labeling of two Linear Quadrilateral ssawith4 and

3 blocks are shown in Figures1 and4.2 respectively.

Figure 4.2: Super vertex mean labeling of a linear quae@ritgisnake witts blocks

4.2.2 Linear Pentagonal Snake

Theorem 4.2.3.Linear Pentagonal snakes('swith &, k£ > 2 blocks are SVM - graphs.

Proof. A linear pentagonal cyclic snake”’; is the graph obtained from, & > 2 copies of
Cs by identifying the vertex; 3 in thei'" copy of Cs at a vertex;, 1 ; in the (i + 1) copy
of C5, wherel <i <k —1.

Let £C5 be a linear pentagonal snake witht > 2 blocks of Cs.

Let,

V(kC5) ={v;;;1 <i<k,1<j<5}and

E(kCs) ={e;; = vijvijr1 ande; s = v;50;1;1 <@ < k,1 < j <4}

Now,p = 4k + 1, q = 5k andp + g = 9k + 1.

Definef : E(kCs) — {1,2,3,---,9k + 1} as follows,
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Wheni = 1,

0, if =1,
25 +4, if2<75<3,
fleij) =
1, if j =4,
\3, if 7 =5.
And When2 < ¢ < k,
.
9i — 9, if =1,

fleij) =q9i+2j—5, f2<j<3,

9i+3j—18, if4<j<5.
\

It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

Wheni =1,
(
4, ifj=1,
7, ifj=2,
f(vig) =
6, ifj=4,
\2, if j =5.

And when2 < ¢ < k,
9i+2j—9, if1<;j<2
fPvig) =91 —2j+6, if4<j<5

9k, if i =k, andj = 3.

Clearly it can be proved that the union of the set of edge ladnatsthe induced vertex
labels is{1,2,3,--- ,9k + 1}.

Therefore, linear pentagonal snaké&s; are Super Vertex Mean graphs. H

Example 4.2.4.SVM labeling of a linear pentagonal snake witblocks is shown in Figure

4.3.
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Figure 4.3: SVM labeling of a linear pentagonal snal@;.

4.2.3 Linear Hexagonal Snake
Theorem 4.2.5.Linear Hexagonal snakes(s, k£ > 2 are Super Vertex Mean Graphs.

Proof. Let kCs be a hexagonal snake wikthk > 2 blocks ofCs.
Let,

V(kCs) ={vi;;1 <i<k,1<j<6}and

E(kCs) = {e;; = vijvij+1 ande; g = v;6v;1;1 <7 < k,1 < j <5}
Now, p = bk + 1 andq = 6k andp + ¢ = 11k + 1.

Definef : E(G,) — {1,2,3,--- ,11k + 1} as follows,

;

37, ifi=1, andl < j <4,
7, if i =1, andj = 5,
1, ifi =1, andj = 6,
fleig) =
11i — 47, if2<i<k andl <j <2,

11i4+3j—11, if2<i<k and3 <j <4,

11i — 8§+ 37, if2<i<k, and5 < j <6.
\

It can be easily verified that is injective.
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Then, the induced vertex labels are as follows:

;

11i+3j—12, if1<i<k, andl <j <2,
8, ifi=1, andj = 3,
) 115 — 5, if 2<i<k, andj = 3,
[o(vig) =
11k, if i =k, andj = 4,
115 — 1, if 1 <i<k, andj =5,
115 — 7, if 1 <i<k, andj = 6.

\
Clearly it can be proved that the union of the set of edge ladnatsthe induced vertex
labels is{1,2,3, .-, 11k + 1}.
Therefore, linear hexagonal snakég/; with & blocks of Cy are Super Vertex Mean

graphs. 0

Example 4.2.6.Figure 4.4 shows SVM labeling of a linear hexagonal snake witiocks.

Figure 4.4: A linear hexagonal snak&/s is SVM labeled

4.2.4 Linear Heptagonal Snake

Theorem 4.2.7.Linear Heptagonal snakes(7, k > 2 are Super Vertex Mean Graphs.

Proof. Let kC'; be a linear heptagonal snake witht > 2 blocks ofC~. Let,
V(k’07) = {Ui,j;l S 1 S k,’,l S ] S 7} andE(k’C7) = {61'7]' = Ui,jvi,j—i-l and€¢77 =

Vvl <@ <k, 1<j<6}.
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Now, p = 6k + 1 andq = 7k andp + ¢ = 13k + 1.
Definef : E(G,) — {1,2,3,--- ,13k + 1} as follows,

;

4.] - 17
30 — 45,
1,
fleij) =
13i +2j — 7,
13 — 13,
13i +2j — 21,
\

It can be easily verified that is injective.

ifi=1, andl <j <3,
ifi=1, and4 < j <6,
ifi=1,andj =7,
if2<i<k, andl <j <4,
if2<i<k, andj =5,

if2<i<k, and6 <j <T.

Then, the induced vertex labels are as follows:

;

2,

45— 3.

32— 4,

13 — 10,
fouig) =

13i +2j — 8,

13i — 6,

13i + 3j — 29,

13k,

ifi=1, andj =1,
ifi=1, and2 < j < 3,
ifi=1,and5 <j <7,
if2<i<k,andj =1,
if2<i<k and2 <j <3,
if2<i<k, andj =5,
if2<i<k, and6 <j <7,

if i =k, andj = 4.

Clearly it can be proved that the union of the set of edge ladedsthe induced vertex

labels is{1,2,3, -, 13k + 1}.

Therefore, linear heptagonal snakés;; with k£ blocks of C; are Super Vertex Mean

graphs.

]

Example 4.2.8.Given in Figure4.5 is an SVM labeling of a linear heptagonal snaié’;.
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Figure 4.5: Super Vertex Mean Labeling3sf linear cyclic snake.

4.2.5 LinearkC,,k > 2 blocks of C,,,n > 8 and n = 0(mod 2)

Theorem 4.2.9.Let kC,, be a linear cyclic snake witk, £ > 2 blocks ofC,,,n > 8 and

n = 0(mod 2). ThenkC,, is a Super Vertex Mean graph.

Proof. LetkC,, be alinear cyclic snake with, £ > 2 blocks ofC,,,n > 8 andn = 0(mod 2)
and letn = 2r,r > 4.

LetV(kC,) ={vi;;1 <i<k,1<j<n}and

E(kC,) ={ei; =vijvijr1 & ein =001;1 <i <k 1<j<n-—1}

Now,p = (n — 1)k +1andg =nkandp+q¢ = (2n — 1)k + 1.

Definef : E(kC,) — {1,2,3,---,(2n — 1)k + 1} as follows,

;

37, ifi=1, andl < j <3,
45 — 3, ifi=1, and4 < j <r,
fleij) =q4n—4j+4, fi=1andr+1<j<n-—2,

7, if:=1, andj =n — 1,

1, if i =1, andj = n,
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(2n —1)i — 2n + 8, if 2<i<Fk andj =1,

(2n — 1)i — 2n + 4, if 2 < i<k andj =2,
(2n — 1)i — 2n + 10, if 2 < i<k andj =3,
fleij) =
20 —1)i—2n+4j—2, f2<i<k andd<j<r,

(n—1)i+2n—4j+5, f2<i<k andr+1<j<n-—1,

(2n—1)(i —1), if i =k, andj = n.

\
And, the induced vertex labels are as follows:

p

2, ifi=1,andj =1,
35 —1, ifi=1, and2 < j <4,
45 — 5, ifi=1,and5 <j <r,
dn — 45 + 6, fi=1,,andr+2<j;<n-1,
4, if i =1, andj = n,
§ (2n —1)i — 2n + 3, if2<i<k, andj =1,
fo(uig) =
(2n — 1)i — 2n + 6, if 2 <i<k, andj =2,
(2n —1)i —2n + 7, if 2<i<k, andj = 3,
(2n—1)yi—2n+4+4j—4, f2<i<k andd<j<r,
2n—1)i+2n—45j+7, f2<i<k,andr+2<j<n-1,
(2n —1)i — 2n + 5, if 2<i<k, andj =n,
\(2n—1)k:, if i =k, andj =r+ 1.

We prove the theorem by mathematical induction-pwheren = 2r,r > 4.
The above edge labeling functigffe) and the induced vertex labeling functigti(v)

are expressed in terms ofas follows;
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fleij) =

\

37,

47 = 3,

8r — 4j + 4,
7,

L,

(dr — 1)i — 4r + 8,
(dr — 1)i — 4r + 4,
(4r — 1)i — 47 + 10,
(dr — 1)i — 4r + 45 — 2,
(4r — 1)i+4r — 45+ 5,

(4r = 1)@ = 1),

if i =1, andl < j < 3,

ifi=1 and4 <j <r,
ifi=1,
ifi=1, andj =2r — 1,
if : =1, andj = 2r,
if2<i<k, andj =1,
if 2<i<k, andj = 2,
if 2<i<k, andj = 3,
if 2 <i<k,
if 2 <i <k,

if : =k, andj = 2r.

And the induced vertex labeling in termsois,

f(vig) =

(

2,

35— 1,

4j =5,

8r —4j +6,
4,

(4r — 1)i — 4r + 3,

(47 — 1)i — 4r + 6,

(dr — 1)i —4r + 7,

ifi=1, andj =1,
ifi=1, and2 < j < 4,
ifi=1 and5 <j <r,
ifi=1 andr+2<y
if i =1, andj = 2r,

if2<i<k andj =1,
if2<i<k, andj =2,

if 2<i<k, andj = 3,
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;

(4r—1)i—dr+4j—4, if2<i<k andd<j<r,

Ar—1)i4+4r—45+7, if2<i<k, andr+2<;<2r—1,
[P (vij) = <
(4r — 1)i — 4r + 5, if 2<i<k, andj = 2r,

\(47"—1)/{, ifi=~F andj =r+1.
We prove that the theorem is true when= 4, n = 8. Whenr = 4 the linear cyclic
snhake is a linear octagonal snake witlk > 2 cycles ofCs.
Now, p = 7k + 1 andq = 8k andp + ¢ = 15k + 1.
Definef : E(kC,) — {1,2,3,--- ,15k + 1} as follows,

(

3, ifi=1, andl <j <3,
13, if i =1, andj = 4,
36 — 47, if i =1, and5 < 5 <6,
7, ifi=1,andj =7,
1, ifi=1, andj =8,
fleij) = { 15i — 8, if2<i<k, andj =1,
15 — 12, if 2<i<k, andj =2,
15i — 6, if 2<i<k, andj =3,
151 — 2, if 2<i<k, andj =4,
150 —4j+21, if2<i<k, ands<j <7,
157 — 15, if i =k, andj = 8.

\

It can be easily verified that is injective.

The induced vertex labels are as follows:

(

2, ifi=1, andj =1,

. 3j—1, ifi=1and2<j <4,
[ (vij) =
38 —4y, ifi=1 and6 <j <7,

4, if i =1, andj =8,
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(

15i — 13, if2<i<k andj =1,

151 — 10, if 2<i<k, andj =2,
15i — 9, if 2<i<k, andj = 3,
[ (vij) = 1 150 — 4, if 2<i<k, andj =4,

156 —4j+23, if2<i<k and6<j <7,

15i — 11, if 2<i<Fk andj =8,

15k, if i =k, andj = 5.

\

Clearly it can be proved that the union of the set of edge ladedsthe induced vertex

labels is{1,2,3,---,15k + 1} as follows;

f(E) ={3,6,9,13,16,12,7,1} U
{22,18,24,28,31,27,23,15} U---
{15k — 8,15k — 12,15k — 6, 15k — 2, 15k + 1,
15k — 3,15k — 7,15k — 15}
(V) ={2,5,8,11,14, 10,4} U
{17,20,21,26,29,25,19} U- -,
{15k — 13,15k — 10, 15k — 9, 15k — 4, 15k — 1,

15k — 5,15k — 11, 15k}.

F(E) U f°(V)=1{1,3,6,7,9,12,13,16} U{2,4,5,8,10,11,14} U
{15,18,22,23,24,27,28,31} U{17,19,20,21,25,26,29} U---
{15k — 15,15k — 12,15k — 8,15k — 7,15k — 6, 15k — 3, 15k — 2,
15k + 1} U {15k — 13,15k — 11,15k — 10, 15k — 9, 15k — 5,
15k — 4,15k — 1,15k}

={1,2,3,4,---,29,30,31,--- , 15k — 2,15k — 1,15k, 15k + 1}
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Thus the theorem is true when= 4.
Now we assume that the theorem is truesffor 1,7 > 5 (i.e., forn — 2,n > 10).
Now,p = (n—3)k+1=(2r —3)k+1landg = (n — 2)k = (2r —2)k andp + ¢ =
(2n —5)k +1 = (4r —5)k + 1.
The induction hypothesis is that the edge labeling,

f : E(k’ogr_g) — {1,2,3, s ,(47’ — 5)k + 1}

defined as follows, is a Super Vertex Mean Labeling, where 5, n > 10, n = 0(mod 2)
andk > 2.

37, ifi=1, andl < j <3,

45 — 3, ifi=1 andd < j<r—1,

8r—4j — 4, ifi=1, andr < j < 2r —4,

7, if i =1, andj = 2r — 3,

1, if =1, andj = 2r — 2,
fleig) =9 (4r — 5)i — 4r + 12, if2<i<k andj=1,

(47 — 5)i — 4r + 8, if 2 <i<k, andj =2,

(4r — 5)i — 4r + 14, if 2<i<k, andj =3,

(4r —5)i—dr +4j+2, f2<i<k andd<j<r—1,

(Ar =5)i+4r—4j+1, if2<i<k, andr <j <2r—3,

(4r —5)(i — 1), if i =k, andj = 2r — 2.

\

And the induced vertex labeling is,

2, ifi=1, andj =1,
. 37— 1, if i =1, and2 < j < 4,
[o(vij) =
45 — 5, ifi=1 and5 <j<r—1,
\87‘—4]'—2, ifi=1,andr+1<j <2r—3,
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Y

(4r —5)i —4r + 7,

ifi=1, andj = 2r — 2,

if2<i<k andj =1,

(4r — 5)i — 47 + 10, if 2<i<k andj =2,
) (47 — 5)i — 47 + 11, if2<i<k andj =3,
f(viy) =

(4r — 5)1 — 4r + 4y, if2<i<k, and4d <j<r-—1,

(4r —B)i+4r—4j+3, if2<i<k andr+1<;j<2r—3,

(4r — 5)i — 4r + 9, if2<i<k,andj =2r —2,

(4r — b)k, ifi =k, andj =r.

\
Now we prove that the result is true for any If we replacer with » + 1 in the above
mapping we get,

(

37, if i =1, andl < j < 3,

45 — 3, ifi=1 and4 <j <,

8r—4j + 4, ifie=1,,andr+1<j5<2r—2,
7, ifi=1, andj =2r — 1,

1, if i =1, andj = 2r,

(4r — 1)i — 4r + 8, if 2<i<Fk andj =1,

(4r — 1)i — 4r + 4, if 2<i<Fk, andj =2,
(4r — 1)i — 4r + 10, if 2<i<k, andj = 3,
(dr —1)i—4dr+4j—2, if2<i<k andd<j<r,

(4r —1)i4+4r —4j+5, if2<i<k andr+1<j<2r—1,

(4r —1)(i — 1), if i =k, andj = 2r.
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And,

2, ifi=1, andj =1,

35 — 1, if i =1, and2 < j < 4,

45 — 5, ifi=1,and5 <j <r,

8r—4j 46, ifi=1andr+2<j<2r—1,

4, if i =1, andj = 2r,

(4r — 1)i — 4r + 3, if2<i<k andj =1,
fo(vij) =

(4r — 1)i — 4r + 6, if 2<i<k, andj =2,

(4r —1)i —4r + 7, if 2<i<k, andj =3,

(4r —1)i—4r+4j—4, f2<i<k andd<;j<r,

(Ar —1)i4+4r—45+7, if2<i<k,andr+2<;<2r-—1,

(4r — 1)i — 4r + 5, if 2<i<k, andj = 2r,

\(47"—1)/{, ifi=~F andj =r+1.

This is equivalent to the original labeling in termsrgfwhich is given in the beginning
of the proof, and itis clear that( £)U f*(V) = {1,2,3,--- ,(dr— 1)k —1, (4r — 1)k, (4r —
1)k +1}.

Thus the theorem is proved by Mathematical Induction. O

Example 4.2.10.Figure 4.6 is an SVM - labeling of a linear cyclic snakeé’;.

(8)——(1)—15)
s O W B

Figure 4.6: SVM - Labeling of a linear cyclic snakx,,.
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4.2.6 LinearkC,,k > 2 blocks of C,,,n > 9andn = 1(mod 4)

Theorem 4.2.11.Let £C,, be a linear cyclic snake with, k& > 2 blocks ofC,,n > 9 and

n = 1(mod 4). ThenkC,, is a Super Vertex Mean graph.

Proof. Let kC,, be a cyclic snake witl, &£ > 2 blocks ofC,,,n > 9 andn = 1(mod 4).

Letn =2r +1,r > 4, andr = 2s,s > 2 so thatn = 4s + 1.
LetV(kC,) ={v;;;1 <i<k,1<j<n}and

E(kC,) ={ei; =vijvijr1 &ein=001;1 <i <k, 1<j<n-—1}

Now,p = (n — 1)k + 1andg =nkandp+ g = (2n — 1)k + 1.
Definef : E(kC,) — {1,2,3,---,(2n — 1)k + 1} as follows,

(

n?
2j+n—1,
29 —n—2,

fleij) =

\

ifi=1, andj =1,

ifi=1 and2 <j <r+1,
ifi=1, andr +2<j <n,
if2<i<k,andj =1,
f2<i<k and2<j<r-—3,
f2<i<k, andr—2<j;<r-—1,
if2<i<k,andr <j<r+1,
f2<i<kn#9andj=r-+2,

if2<i<kn=9andj=r-+2,

if2<i<k, andj =r+3,
f2<i<k, andr+4<j<n-+1-s,
f2<i<k, andn+2-s<j<n-—1,
if 2<i<k, andj =n.

And, the induced vertex labels are as follows:
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Wheni = 1, andn > 9,

n—1, if j=1,
(o) = 2j+n—2, if2<j<mr,
n+1, if j=r+2,
\2j—16, ifr4+3<j<n.
And when2 < i < k, andn =9,
)
17i — 13, if j =1,
17i+3j— 14, if2<j<4,
174, if j =5andi =k,
f(vig) =170 — 3, if j =6,
29, if j =7,
19, if j =8,
23, if j =0.

\

And when2 < { < k, andn > 13,

p

(2n—1)i —3r — 1, if j =1,
2n—1)i—-n+2j—-3, (f2<j<r—3

C2n—1)yi—n+2j—2, ifr—2<j<r-—1,

(2n —1)i — 2, if j =,

(2n — 1)i, if i =k, andj = r + 1
f(vig) = S

(2n —1)i — 3, if j=7r+2,

(2n—1)i —n — 3, if j =r+3,

2n—1)yi—3n+2j—4, fr+4<j<n+1-s,

2n—1)yi—3n+2j—-3, fn+2—-—s<j<n-—1,

\(2n—1)’i—n—2, if j =n.
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We can easily prove the theorem by the technique of matheahatiduction ons as in

the previous theorem. The remaining of the proof is left agxarcise. O

Example 4.2.12.SVM Labeling of a linear cyclic snake(';; is given in Figure4.7.

9 7
(3) ()
1 10 &) &)

51

Figure 4.7: SVM - labeling of a line&C' 3 snake.

4.2.7 LinearkC,,k > 2 blocks of C,,,n > 11 and n = 3(mod 4)

Theorem 4.2.13.Let kC), be a linear cyclic snake with, k£ > 2 blocks ofC,,,n > 11 and

n = 3(mod 4). ThenkC,, is a Super Vertex Mean graph.

Proof. Let kC,, be a cyclic snake with, k > 2 blocks ofC,,,n > 11 andn = 3(mod 4).
Letn =2r+4+1,r > 5,andr = 2s+ 1,s > 2 so thatn = 4s + 3.

LetV(kC,) ={vi;;1 <i<k,1<j<n}and

E(kC,) ={ei; =vijvijpy1 &eip =0001;1 <i <k, 1<j<n-—1}

Now,p = (n — 1)k + 1andg =nkandp+ ¢ = (2n — 1)k + 1.
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Definef : E(kC,) — {1,2,3,---,(2n — 1)k + 1} as follows;

4

45 —1, ifi=1, andl <j <,

dn — 45 + 2, ifi =1, andr +1 < j < 2r,

1, if i =1, andj = n,

2n—1)yi—2n+254+7, if2<i<k, andl <j <3,
flei) =8 @n—1)i—2n+4j+1, if2<i<k andd<j<r—1,

2n—1)i—3r+3j—2, f2<i<k, andr<j<r-+1,
( y j

2n—1)i+2n—45+2, if2<i<k, andr+2<j<2r-—2
(2n —1)i — 2n + 1, if2<i<k, andj =2r —1,
\(2n—1)i—4n+2j—|—7, if2<i<k, and2r <j <n.

And, the induced vertex labels are as follows;

¢

2, ifi=1, andj =1,
45 — 3, ifi=1 and2<j <r,
dn — 45 + 4, ifi=1,andr +2 <j <n,

(2n — 1)i — 2n + 4,

if2<i<k, andj =1,

(2n—1)i—2n+2j+6, if2<i<k and2<j <3,
) 2n—1)i—2n+4j—1, f2<i<k andd<j<r,
fr(vig) =
(2n — 1)i — 1, if2<i<k andj=r+2
2n—1)i+2n—4j+4, if2<i<k andr+3<;j<2r—2
(2n — 1)i — 2n + 8, if2<i<k andj=2r—1,
(2n — 1)i — 2n + 3, if 2 <i<k andj = 2r,
(2n — 1)i — 2n + 6, if2<i<k, andj =2r+1,

We can easily prove that the above labeling is an SVM labedingC,,, wherek > 2

\

(2n — 1)k,

if i =k, andj =r + 1.
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blocks ofC,,,n > 11 andn = 3(mod 4), by using the technique of mathematical induction

ons, wheren = 4s + 3. Thus the theorem. O

Example 4.2.14.SVM - Labeling of a linear cyclic snake&(C'5 is given in Figures.8.

(@)
=/

41 29
@ @
45 42

®
®

49 46

S B
E)—&)
DD
&)—1&)

59

Figure 4.8: SVM - labeling of a linear cyclic snakx.

4.3 Conclusion

In this chapter, we have proved that all the linear cyclickesaare Super Vertex Mean
graphs. In the case of Super Mean Labeling, the vertex analof§SVM, it was easier to
obtain a general formula for linear cyclic snakes as welltagrocyclic snakes represented
by the stringsy, s9, 83, - - , Sx_2, Where eachy; need not be equal. This is because when we

calculate the induced edge label for an edge, by finding tbeage of the labels of the two

75



vertices which are the end points of that particular edgen&ezl to consider only those two
vertices. Therefore the average remains the same as inshetaycles.

But for Super Vertex Mean labeling, when we find the inducedexelabeling of the
connecting vertices of a cyclic snake we have to considerddges that are incident on those
vertices to get the average. Thus it becomes pretty difftouttotain a general formula for
cyclic snakes represented by the stringss, ss, - - - , s,_2, Where eacls; need not be equal.
Another possibility emerges is that we try to explore the SVMbeling of KC' — snakes,
which is defined as a connecting graph in which each ofttheany blocks is isomorphic
to a cycleC), for somen and the block - cut point graph is a path. As in the cask®@f —
snakes, &C —snake too can be represented by a string of integers,,--- ,s — k — 2. It

remains still an open problem to labek&' —snake which has either equalor differents;.
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Chapter 5

Edge Linked Cyclic Snake as SVM -
Graphs

In this chapter we have yet another type of cyclic snakess fifple is an edge analogue of
kC,, snake. Whereas (', each cycle is connected to the next by a means of a verteg, edg
linked cyclic snakes are those connected cycles by meamseaxfge. Here we reproduce the
definition and a short discussion on them, from [30] and erarthe SVM - behaviour of

linear edge linked cyclicl{ L(kC,,)) snakes.

5.1 Edge Linked Cyclic (EL(kC,,))Snakes

Definition 5.1.1. A connected grapk: obtained fromk, &k > 2 copies of a cycl€’,,, where
n > 4, by identifying an edge df + 1)th copy, called link, to an edge of théth copy for
eachi, 1 <i < k—1, in such away that consecutive links are not adjacent is dalleedge

linked cyclic & L(kC,,)) snake.

5.1.1 Representations ot/ L(kC,,) - Snake

The way to construct anf{L.(2C,,)) - snake is unique. Far > 3, a copy ofC,, can be
attached im — 3 ways to an £ L(k — 1C,,)) - snake to obtain anf{L(kC),)) - snake. Let¢
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be and £L(kC,,)) snake. Consider a pafh of minimal length that contains all the links of
G. Clearly both ends oP are links. Beginning from one of its extreme links, it is pb#sito
construct a string’, s, s5, - - - , s,_, of k — 2 integers where thé" integer,s; on the string
is the number of edges that separates the lirffkem the link (i + 1) of G on the pathP.
Foreach,1 <i < k — 2, letu,;v; denote the link of G' on the pathP, so that the integey;
becomes the length of the — u;.; path onP. As there are: — 3 different ways to connect
the (i + 1) copy ofC, to thei’" copy, s, is taken fromS’ = {1,2,3,--- ,n — 3}.

Until now, this representation is not unique, because ieddp on the extreme éf taken
and there are exactly two such pathsfasBut, the four strings obtained for both ends of
each of the two paths are the same, in the sense that oneiisazbtieom the other by means

of one of the following operations;
1. reversing the string
2. replacing eachy, on the string byn — 2 — s/
3. replacing eachy, on the string byn — 2 — s; and reversing it.

Thus without loss of generality we assume that aRy (kC,)) - snake is uniquely

represented by a string. This is illustrated by the follayvaxample.
Example 5.1.2.An EL(5C7) - snake represented by its unique string in Figure 5.1.

Consider graphG = EL(5C;) - snake of figure4.1.  Consider the path
Py : abcde f ghijklmn of minimal length that contains all the links 6f. It is clear that
ab, de, hi, andmn are links ofG. Beginning from the linkub, we observe that two edges
separate linkl (ab) from link 2 (de), thus we haves| = 2. In a similar way the integers
s, = 3,s = 4 can be obtained. Hencg 3,4 is a string attached t6:. If we had
constructed the string beginning from the link{nm), the string would have beeh 3, 2.
Similarly 3,2,1 and 1, 2,3 would have been the strings, had we constructed the string
starting from link ¢a) or link (mn) respectively using the path, : barsedtihnm. It is easy

to observe that one string can be obtained from the other gnmef any one of the

78



Figure 5.1: An EL(5C7) - snake represented by its unique string.

operations mentioned earlier, in the construction of thagt Therefore these four strings
are considered to be the same and we use any one of them teasiire
LetG be anEL(kC,,) - snake represented by a strigigs,, s, - - - , s}, of k—2 integers.

ThenG is said to bdinear if s; = |2| — 1 or [2] — 1, for eachi.

Remark 5.1.3. All EL(kC,,) -snakes in this chapter are constructed keeping the followin
aspects in mind, wheke ; or v; ; represent thg*" edge or vertex of thé" cycle inEL(kC,,)

respectively]l <i < k,andl < j <wn;
1. Whenn is odd

1= Vit where|% | or [%] is odd.

* Vilg)er|

[ ] Ui:L

NE
NE

| = Vit1,n, Where| 2| or [%] is odd.

NE

J+1 or (%—‘4—
® €|z or [3] = Citim where|% | or [%] is odd.
2. Whenn is even

® Vi = Vit11-

® Vizi1 = Vitin:

79



3. For all n.

e p=(m—-2k+2,q=(n—1k+1andp+q=(2n—3)k+3.

5.2 Linear EL(kC,) - snakes and their SVM - Behaviour

From the above discussion it is vividly clear that there iyyame EL(kC,) - snake,
the ladderP,.; x P,, which is an SVM - graph. For the sake of completeness, wenbegi
discussingt' L(kC,) - snakes.

5.2.1 EL(kCy) - Snake

Theorem 5.2.1. EL(kC,) - snake is an SVM graph.

Proof. Let G be anE L(kC}) - snake= Py, x P,. Clearly the order of7 isp = 2k + 2 and
the size ofG is ¢ = 3k + 1.
Definef : E(EL(kCy)) — {1,2,3,...,5k + 3} as follows:

25 + 1, if i=1, andl < j < 3,
1, if i =1, andj = 4,
5i — 1, if2<:<k-1, kisoddandj =1,

fleij) =45i+2j—4, f2<i<k—1, kisoddand < j < 3,
51, f2<i<k-—1, kisevenang =1,

51+3j—7, if2<i<k-1, kisevenan® < j < 3,

5k +2j =3, ifi=k 1<j<3.
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The induced vertex labels are found to be as follows:

;

2, ifi=1, andj =1,
504+2j+3, if1<i<k-—1, kisevenan® < j < 3,
fo(vi) =1 4, if i =1, andj = 4,

5i+27+2, if1<i<k-—1, kisoddan® < j <3,

5k+2j—4, ifi=k 2<j<3.

It can be easily verified thaf is a Super Vertex Mean labeling as it is an injective
mapping and the set of edge labels and induced vertex label$, 2,3, ..., 5k + 3}.
ThereforeE' L(kC,) snake is SVM. O

Example 5.2.2.Super vertex-mean labeling offal. (5C)) - snake is shown in Figure2.

3 9 15 19 24
1 5 10 14 20 26
7 12 17 22 28

Figure 5.2: EI(5C,) - snake is SVM graph.

5.2.2 Linear EL(kC5) - Snake

Theorem 5.2.3.A Linear EL(kC5) - snake is SVM.

Proof. Let EL(kC}) - snake be linear.
Herep =3k +2,q =4k + 1andp + ¢ = Tk + 3.
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Definef : E(EL(kC5)) — {1,2,3,---,7k + 3} as follows;

(3, ifi=1, andj =1,

7, ifi=1, andj = 2,

8, if i =1, andj = 3,

6, ifi =1, andj =4,

1, ifi=1, andj =5,
flei;) =411, if i =2, andj =1,

i — 4, if3<i<k, andj =1,

7i—1, if2<i<k-—1, andj = 2,

71, if2<i<k-—1, andj = 3,

T+ 2, if2<i<k-—1, andj = 4,

k7l<:+2j—5, ifi =k, and2 < j <4.

The induced vertex labels are found to be as follows:

(2, ifi=1, andj =1,
5, ifi=1, andj = 2,
9, if i =1, andj = 3,

fo(vij) = 1 10, if i =1, andj = 4,
4, ifi=1, andj =5,
7T1+3j—8, if2<i<k-—1,and2<j <4,
K7l<:+2j—6, ifi =k, and2 < j <4.

It can be easily verified thatis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex lab€ls, & 3, ..., 7k + 3}. Therefore, linear
EL(kCj5) - snake is SVM. O

Example 5.2.4.Figure 5.3 is an SVM labeling of a lineaf’ L.(4C5) - snake.
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6 16 23 31

Figure 5.3: SVM labeling of a linear ELC5) - snake.

5.2.3 Linear EL(kCs) - Snake
Theorem 5.2.5.Linear EL(kCj) - snake is a Super Vertex Mean Graph.

Proof. Let EL(kCs) be a linear edge linked cyclic snake. Thes ¢ = 9% + 3.
Definef : E(EL(kCs)) — {1,2,3,--- ,9k + 3} as follows;

;

27 + 1, ifi=1, andl < j <5,

1, if : =1, andj = 6,
9i+2j—7, f2<i<k-—1 andl<j<2,
fleiz) =
9i — 2, if2<i<k-—1, andj = 3,

9 +3j—13, if2<i<k—1,and4<j <5,

9k +25—7, ifi=k andl <j <5.

The induced vertex labels are found to be as follows:

.

27, ifi=1,andl < j <2,

8, ifi=1, andj = 3,

20 — 27, ifi=1, and4 < j <5,
ff(vig) =16, if i =1, andj = 6,

9i+4j—12, if2<i<k—1,and2<j <3,

9 —2j+11, if2<i<k—1, and4<j <5,

\9k:+2j—8, ifi=~F and2 < j <5.
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It can be easily verified thdtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex lab€dls & 3, ..., 9k + 3}. Therefore, linear
EL(kCs) - snake is SVM. O

Example 5.2.6.Figure 5.4 shows SVM - labeling of a linedl L(3Cj).

N 13 15 22 24

N A A

Figure 5.4: SVM - labeling of a linear EB(C).

5.2.4 Linear EL(kC7) - Snake
Theorem 5.2.7.Linear EL(kCr)- snake is a Super Vertex Mean Graph.

Proof. Let EL(kC7) be alinearp +¢q = 11k + 3.
Definef : E(EL(kC7)) — {1,2,3,--- ,11k + 3} as follows;

(

3, ifi=1, andj =1,

7, if i =1, andj = 2,

19 — 27, ifi=1, and3 < j <5,
fleig) =

6, if i =1, andj = 6,

1, ifi=1,andj =7,

11i+2j—9, if2<i<k, andl <j <2,
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;

11i—2j+8, if2<i<k—1,and3<j <6,

fleij) =q11i—2j+9, ifi=k and3<j <4,

110 —2j+38, ifi=k, andb <j <6.

The induced vertex labels are found to be as follows:

2, ifi=1, andj =1,

5, ifi=1, andj = 2,

6 + 27, if i =1, and3 < j < 4,

20 — 27, ifi=1, and5 < j <6,

4, ifi=1, andj =7,

117 — 6, if2<i<k—1, andj =2,

[ (vij) =
110+ 25 — 5, if2<i<k-—1,and3 <j <4,

11i—2j4+9, if2<i<k—1, and5<j <6,
11k — 6, if i =k, andj = 2,
11k —1, if i =k, andj = 3,

11k —2j 410, ifi=Fk, and4 <j <5,

|11k -3, if i = k, andj = 6.

It can be easily verified thgtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., 11k + 3}. Therefore linear
EL(kC7) - snake is SVM. O

Example 5.2.8.Given in Figure5.5 is an SVM - labeling of a lineat' L(3C?).

5.2.5 Linear EL(kCs) - Snake

Theorem 5.2.9.Linear EL(kCy) is a Super Vertex Mean graph.
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Figure 5.5: SVM - labeling of a linear ER(*).

Proof. Let EL(kCs) be a linear edge linked cyclic snake. Thes ¢ = 13k + 3.
Definef : E(EL(kCy)) — {1,2,3,---,13k + 3} as follows;

(

27+ 1, ifi=1, andl < j < 3,
5+ 4, if i =1, and4 < j < 5,
27 +1, ifi=1,and6 <j <7,
1, ifi=1, andj =8,

fleij) =
13i+2j—11, if2<i<k—1, andl <;j<3,

13i+j—8, if2<i<k—1, and4 <j <5,

13i4+2j—12, if2<i<k—1, and6<j<T,

13k+2j— 11, ifi=Fk andl <j<7.
\

The induced vertex labels are as follows:

27, ifi=1, andl < j < 3,
, 55 —9, ifi=1,and4 <j <5,
fo(vij) =

27, ifi=1,and6 <j <7,

8, ifi=1, andj =8,

\
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(

13i4+2j—12, if2<i<k—1,and2<j <3,

. 13i +55—22, if2<i<k—1,and4<j <5,
fo(vig) =
13i4+25—13, if2<i<k-—1,and6 <j <7,

|13k +2j —12, ifi=k and2<;j <7

It can be easily verified thatis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., 13k + 3}. Therefore linear
EL(kCs) - snake is SVM. O

Example 5.2.10.Figure 5.6 gives SVM - labeling of a lineall L(4Cy).

43 47
15 10 /\ 28 23/\1 55 51

Figure 5.6: SVM - labeling of a linear EL(Y).

5.2.6 Linear EL(kCjy) - Snake

Theorem 5.2.11.A linear EL(kCy) is SVM.

Proof. Let EL(kCy) be a linear edge linked cyclic snake. Them ¢ = 15k + 3.
Definef : E(EL(kCy)) — {1,2,3,---,15k + 3} as follows;
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2j — 1,

2j + 2,

29 — 25,

11,

7,

15i + 2j — 13,
15i — 2j + 14,
15i — 4,

15k + 25 — 13,

15k — 2j + 13,

| 15k — 25 + 12,

ifi=1, andl < j <2,
if =1, andj = 3,

ifi=1, and4 < j <5,
ifi=1 and6 <j <7,

if ;=1,andj =8,
ifi=1, andj =9,
if2<i<k—1,andl <j <5,
if2<i<k—1,and6 <j <7,

if2<i<k-—1, andj =8,

if i =k, andl < j <4,
if i =k, and5 < j <6,
if i =k, and7 < j <8.

The induced vertex labels are as follows:

fo(vig) =

(

4,

37 —4,

47 — 6,

37 — 34,

9,

15 + 25 — 14,
156 + 45 — 21,
| 150 — 3j +22,

ifi=1, andj =1,
ifi=1, and2 < j <4,
ifi =1, and5 < j <6,
ifi=1, and7 < j <8,
if:=1, andj =9,

if2<i<k-—1,and2 <j <4,
if2<i<k-—1,and5 <j <6,

if2<i<k-—1,and7 <j <8§,
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(

15k +2j— 14, ifi=Fk and2 < j <4,

f(vij) = 15k + 35 — 16, if i =k, and5 < j < 6,

15k —3j+21, ifi=k, and7<j <8.
\
It can be easily verified thgtis a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labdls 5 3, ..., 13k + 3}. Therefore linear
EL(kCy) - snake is SVM. O

Example 5.2.12.Figure 5.7 shows SVM - labeling of a linedr' L(3Cy).

Figure 5.7: SVM - labeling of a linear EBCy).

5.2.7 Linear EL(kC) - Snake

Theorem 5.2.13.Alinear EL(kC}y) is SVM.

Proof. Let EL(kC)) be a linear edge linked cyclic snake. The# ¢ = 17k + 3.
Definef : E(EL(kCy)) — {1,2,3,--- ,17k + 3} as follows;

89



fleiy) =

2j +1,

2j + 2,

31 — 2,

11,

1,

17i + 2j — 15,
17i — 25 + 14,
17i — 6,

17k + 2j — 15,

17k — 2j + 15,

17k — 2j + 14,
\

ifi=1,andl <j <2,
ifi=1, and3 < j <5,

ifi=1, and6 < j <8,

ifi=1, andj =9,

if : =1, andj = 10,

if2<i<k-—1,andl <j <5,

if2<i<k—1,and6 <j <8,

if2<i<k-—1, andj =9,

ifi =k, andl < j <5,
ifi==Fk and6 < j <7,

if i =%k, and8 < j <09.

The induced vertex labels are as follows:

f(vig) =

175 — 12,
17i 4 2j — 16,
17i + 65 — 33,

17i — 2j + 15,

17i — 4,
\

ifi=1,andl <j <2,
ifi =1, and3 < j <4,
if i =1, and5 < 5 <6,
ifi=1, and7 < j <8,
ifi=1, andj =9,

if i =1, andj = 10,

if2<i<k-—1, andj =2,
if2<i<k-—1,and3 <j <4,
if2<i<k-—1,and5 <j <6,
f2<i<k-—1,and7 <j <8,
if2<i<k-—1,andj =9,
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17k — 12, if i =k, andj = 2,
17k +2j — 16, ifi=k, and3 < j < 4,
f(ij) = 17k — 6, if i =k, andj = 5,

17k +3j —19, ifi=Fk, and6 < j <7,

k17k:—3j+24, if i =k, and8 < j <0O.
It can be easily verified thgtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., 17k + 3}. Therefore linear

EL(kCp) - snake is SVM. O

Example 5.2.14.Figure 5.8 shows SVM - labeling of a linedl L(3CYy).

Figure 5.8: SVM - labeling of a linear EBCY).

5.2.8 Linear EL(kCy,) - Snake

Theorem 5.2.15.A linear EL(kC1;) is SVM.

Proof. Let EL(kC,) be a linear edge linked cyclic snake. The# ¢ = 19k + 3.
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Definef : E(EL(kCy)) — {1,2,3,--- ,19k + 3} as follows;

fleig) =

¢

\

2j — 1,
45 — 6,

14,

33 — 2,

31 — 2,

7,

19 + 25 — 17,
19i — 5,

19i — 2j + 14,
19i — 2j + 12,
19k + 25 — 17,
19k — 25 + 13,
19k — 25 + 12,

if:=1, andl <j <2,

if =1, and3 < j <4,

if i =1, andj = b,

if:=1, and6 < j <8,

if i =1, and9 < j < 10,

if i =1, andj = 11,
f2<i<k-—1,andl <j <4,
if2<i<k-—1, andj =5,
f2<i<k—1,and6 < j <8,
f2<i<k-—1,and 9 <j <10,
if it =k, andl < j <4,
ifi==Fk, and5 <j <7,

if : =k, and8 < 5 < 10.

The induced vertex labels are as follows:

[ (ij) =

(

6 — 27,
37 —4,
16,

34 — 27,
42 — 37,

9,

19i — 3,
\

19 + 25 — 18,

ifi=1, andl <j <2,

ifi =1, and3 < j <4,

if i =1, andj = 5,

ifi=1, and6 < j <8,

if i =1, and9 < j < 10,

ifi =1, andj = 11,
if2<i<k-—1,and2 <j <4,

if2<i<k-—1,andj =5,
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19i—2j+15, if2<i<k—1 and6<;<S8§,
197 —-37+23, if2<i<k-—1,and9 <j <10,
) 19k +2j — 18, ifi=Fk, and2 < j <4,

f(vig) =
19k — 3, if i =k, andj =5,

19k —2j + 14, ifi=4k, and6 < j <S8,

|19k = 2j +13, if i =k, and9 < j < 10.

It can be easily verified thdtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., 19k + 3}. Therefore linear
EL(kC1p) snake is SVM. O

Example 5.2.16.Figure 5.9 gives SVM - labeling of a lineat’ L(3C";).

3 6 25 27 44 46

48

60

11

Figure 5.9: SVM - labeling of a linear EBCY, ).

5.3 Linear Edge Linked Snakes of Higher Orders

5.3.1 Linear EL(kC,) - Snake,n = 0(mod 12) andn > 12

Theorem 5.3.1.Let EL(kC,,) be a linear edge linked cyclic snake, where= 0(mod 12)
andn > 12. ThenEL(kC,,) is SVM.
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Proof. Let EL(kC,,) be alinear edge linked cyclic snake, wheres 0(mod 12) andn > 12
. We know thap + ¢ = (2n — 3)k + 3.

Definef : E(EL(kC,)) — {1,2,3,--- ,(2n — 3)k + 3} as follows;

Case la: Fori = 1

)
n—2j—1, if1<j<2-6

2 —nm+1l, f2-5<j<2-3
2 —m412, fr-2<j<n_1,
fleij) = <
n-+2, if j =2,

3n —27+1,

I3
+
—_

IA
.
AN
N
|
}\D

3n—25—1, ifn—1<j<n.
(

Case2a:For2<i<k-1

(

(2n—3)i—2n+2j+5, f1<j<2—1,
(2n —3)i —n + 5, if j=2
fleij) =q@n—3)yi+n—2j+4, if2+1<j<3n—1,

(2n—3)i+n—2j+3, ifn<j<n-2

(2n —3)i —n +4, if j=n—1.

Case 3a: Forz = k
.

(2n—3)i—2n+2j+5, f1<j<?2-1

Y

fleig) = (@n—3)i+n—-2j+3, ifr<j<

NS

n—1,

(2n—3)i+n—2j+2, if3n<j<n-—1

\

The induced vertex labels are as follows:
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Case 1b: Fori =1

2 —n+10, if2—4<j<n—3
2 —nt1l, ifr—2<j<n—1,
f(vig) =
n + 4, ifj=%

3n—2j+2, fr4+1<j<n-2

n—+ 3, if j=n-—1,
n, if j =n.
Case2b: For2<i<k -1
’ -
(2n—3)i—2n+2j+4, if2<7<5—1,
(2n —3)i — 3n+4, if j =12,
fo(uig) =
(2n—3)i+n—2j+5, if2+1<;j<2in,
((2n=3)i+n—2j+4, ifgn+1<j<n-1

Case 3b: Fori = k

;

(2n—3)i—2n+2j+4, f2<j<2-1,

(2n —3)i — 2 +3, if j =3,

f(vig) =

)

)
(2n —3)i+n —2j +4, if%-l—lgjﬁ%n,
(2n—3)i+n—2j+3, ifSn+1<j<n-1

It can be easily verified thgtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 0(mod 12) andn > 12, is SVM. O
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5.3.2 Linear EL(kC,) - Snake,n = 1(mod 12) andn > 13

Theorem 5.3.2.Let EL(kC,,) be a linear edge linked cyclic snake, where= 1(mod 12)
andn > 13. Then ELEC,,) is SVM.

Proof. Let EL(kC,,) be alinear edge linked cyclic snake, wheres 1(mod 12) andn > 13
. Thenp+ ¢ = (2n — 3)k + 3.

Definef : E(EL(kC,)) — {1,2,3,--- ,(2n — 3)k + 3} as follows;

Case la: Fori = 1

;

fleig) =35 —3[2] +15, if [2] —4<j<[2] -1,

n + 3, if j =151,
3n—25+2, if[5]+1<j<n-2
\3n—2j, ifn—1<j<n.

Case2a: For2 <i:<k-—-1

(

(2n—3)i—2n+2j+5, if1<j<[2] -1,
(2n — 3)i — n + 6, if j =121,
fleig) =g @n—3)i+n—2j+5 if[2]+1<j<[2]+][2]-1,

(2n=3)i+n—2j+4, if[Z]+[5]<j<n-2,

(2n —3)i —n + 5, if j=n—1.

\

Case 3a: Fori = k

,

(2n—3)i—2n+2j+5, if1<j<[2] -1,

flei) =\ @n=3)i+n—2j+4, W [3]<j<3(n+3D) -1,

(2n—3)i+n—2j+3, fin+[2])<j<n-1

\
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The induced vertex labels are as follows:

Case 1b: For: =1

n—2j+1, if1<j<[2]-7,
10, if j=[2] -6,
4, if j =[2] -5,

fuig) =35 —3[2] +14, if [2] -4<j<[2] -1,

n+5, if j =51,
3n—25+3, if[5]+1<j<n-2,
\4n—3j—|—1, ifn—1<j<n.

Case2b: For2<i<k -1

(

(2n —3)i—2n+2j+4, f2<j<[2] -1,
(2n —3)i —2[%] +4,  ifj=T2],

(2n—3)i+n—2j+6, f[2]+1<j<|2]+][2],

((2n=3)i+n—-2j+5 if[5]+[3]+1<j<n-1

Case 3b: Fori = k

¢

(2n—3)i—2n+2j+4, f2<j<[8]-1,

Py = 4 ET T a4 =151,
T en-mien—2is 1314150 < Mo+ 3,

((2n=3)i+n—2j+4, ifsn+[3)+1<j<n—L

It can be easily verified thgtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labgls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 1(mod 12) andn > 13, is SVM. O
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5.3.3 Linear EL(kC,) - Snake,n = 2 or 8(mod 12) andn > 14

Theorem 5.3.3.Let EL(kC,,) be a linear edge linked cyclic snake, where= 2 or
8(mod 12) andn > 14. Then ELEC,,) is SVM.

Proof. Let EL(kC,,) be a linear edge linked cyclic snake, where= 2 or 8(mod 12) and
n > 14. Thenp + ¢ = (2n — 3)k + 3.
Definef : E(EL(kC,)) — {1,2,3,--- ,(2n — 3)k + 3} as follows;

Case la: Forzr =1

2j, if2+1<j<|&)
fleij) =
27 +1, f[2]+1<j<n-1,

1, if j =n.

Case2a: For2 <<k -1

(

(2n—3)i —2n+2j+5, if1<j<2-1,

(2n — 3)i —n + 4, if j =3,
fleij) =
(2n—3)i—2n+2j+3, f2+1<j< (2,

—

|((2n=3)i—2n+2j+4, if [F]+1<j<n—L

Case 3a: Fori = k

f(ez‘,j):{(2n—3)i—2n+2j+5, if1<j<n-—1

The induced vertex labels are as follows:
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Case 1b: Fori =1

4
2]7 |f1§j§%_17
212 +1, ifj=1%,
on, if j=2+1,
[ (viy) =
25 — 1, if24+2<j<|[2]
2J, if |2 +1<j<n-—1,
n, if j =n.
\
Case2b: For2<i<k—-1
4
(2n — 3)i — 2n + 2j + 4, if2<j<2-1,

(2n —3)i—2n+2[ %] +4, ifj =12,

f(vig) =9 (2n — 3)i + 3, if j =241,
(2n —3)i —2n +2j + 2, if 24+2<j< 2]
(2n — 3)i — 2n + 25 + 3, if 3] +1<j<n-—1

\

Case 3b: Fori = k

fU<Uz',j>:{(2n—3)i—2n+2j—|—4, if2<j<n-—1.

It can be easily verified thdtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labgls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snakeyn = 2 or 8(mod 12) andn > 14, is SVM. O

5.3.4 Linear EL(kC,) - Snake,n = 3(mod 12) andn > 15

Theorem 5.3.4.Let EL(kC,,) be a linear edge linked cyclic snake, where= 3(mod 12)
andn > 15. Then ELEC,,) is SVM.

Proof. Let EL(kC,,) be a linear edge linked cyclic snake, wheres 3(mod 12) andn > 15.
Definef : E(EL(kC,)) — {1,2,3,--- ,(2n — 3)k + 3} as follows;
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Case la: Fori =1

n—2j—2, if1<j<|2]-7,

fleig) =935 — 3|2 +15, if [2] —4<j<[2] -1,

n + 3, if j = 5],
3n — 27, if [5]+1<j<n-3,
\3n—2j—2, ifn—2<j<n.

Case2a:For2<i<k-1

2n —3)i —2n+2j+5, if1<j<|2]-1,

fleiy) =
2n—3)i+n—2j+3, if|[2]+1<j<2+[2] -1,

2n—3)i+n—-2j+2, ifz+[5]<ji<n-—-1

((
(2n — 3)i —n +6, it j = 2],
(
(

Case 3a: Fori = &

(

(2n—3)i—2n+2j+5, if1<j<[2] -1,
fleij)=q@n—38)yi+n—2j+2, if[2]<j<i(n+|2])-1,

(2n—3)i+n—2j+1, fi(n+[2))<j<n-—1

\

The induced vertex labels are as follows:
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Case 1b: Fori =1

n—25+1, iflﬁjﬁl%J—?,
10, it j= 2] —
B tj=13-5

£ (vig) = 3 3j =35l +14, if[3]-4<j<[3]-1,
e =15,
3n—2j+1,  if[5]+1<j<n-3
n+ 4, fj—n_2
\3n—2j_1, ifn—1<j<n.

Case2b: For2<i<k -1

2n —3)i —2n+2j+4, if2<5<[5] -1,

2n — 3)i — 3 44, if j=1[%],

2n—3)i+n—2j+3, 2+ |2 +1<j<n-2,

(
(
i) =9 @n—3)i+n—2j+4, if[2]+1<j<2+|2],
(
L(

2n — 3)i — n +4, if j=n—1

Case 3b: Fori =k

(

(2n—3)i—2n+2j+4, f2<j<[2] -1,

Py < d BT Ll =1
Tl en-gien—2i43 W3 +1<0< o+ (3D,

((2n=3)i+n—-2j+2, ifs(n+[3))+1<j<n—L

It can be easily verified thdtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 3(mod 12) andn > 15, is SVM. O
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5.3.5 Linear EL(kC,) - Snake,n = 4(mod 12) andn > 16

Theorem 5.3.5.Let EL(kC,,) be a linear edge linked cyclic snake, where= 4(mod 12)
andn > 16. Then ELEC,,) is SVM.

Proof. Let EL(kC,,) be alinear edge linked cyclic snake, where: 4(mod 12) andn > 16.
Definef : E(EL(kC,)) — {1,2,3,---,(2n — 3)k + 3} as follows;
Case la: Fori = 1

n—2j—1, ifl1<j<2-6,

2 —m+1l, f2-5<j<z-3
2 —nt12, fr-2<j<n1,
fleij) =
n+ 2, ifj =3,

3n—2j+1, f2+1<j<n-2

3n—2j—1, ifn—-1<j<n.

Case2a: For2 <<k —1

/

(2n—3)i—2n+2j+5, f1<j<2—1,
(2n —3)i—n+7, if j =2,
fleig) =S @n—3)i+n—2j+4, if2+1<j<n—21i(2]+3),

(2n—3)i+n—2j+3, ifn—3([2]+1)<j<n-3,

(2n—3)i+n—2j+2, ifn—-2<j<n-1L1

\

Case 3a: Fori = &

(

(2n—3)i—2n+2j+5, fl1<j<2-1

)

fleig)=q@n—3)i+n—-2j+3, if2<j<3n-1,

= 0o

(2n—3)i+n—2j+2, if%nﬁjgn—l.

\

The induced vertex labels are as follows:
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Case 1b: Fori =1

2 —n+10, f2—4<j<2-3
% —n+11, fr-2<j<2-1
fo(vij) =
n+4, ifj=2
3n—2j+2 if24+1<j<n-—2
n—+ 3, if j=n-—1,

n, if j =n.

Case2b: For2<i<k -1

(

(2n—3)i—2n+2j+4, f2<j<2-1
(2n —3)i—n+ 5] +5, ifj=7%,

fig) =9 @n—3)i+n—2j+5 #F2+1<j<n—3(2]+1),
(2n—3)i+n—2j+4, fn—3(2-1)<j<n-2

(2n —3)i —n + 5, if j=n—1

Case 3b: Fori =k

(

(2n —3)i —2n+2j+4, if2<j<2-1,

(2n —3)i — 2 +3, if j =2,
folvig) = f
(2n—=3)i+n—2j+4, f2+1<;<3n,

(2n—=3)i+n—2j+3, ifin+1<j<n—1

It can be easily verified thdtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 4(mod 12) andn > 16, is SVM. O
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5.3.6 Linear EL(kC,) - Snake,n = 5(mod 12) andn > 17

Theorem 5.3.6.Let EL(kC,,) be a linear edge linked cyclic snake, where= 5(mod 12)
andn > 17. ThenEL(kC,,) is SVM.

Proof. Let EL(kC,,) be alinear edge linked cyclic snake, where: 5(mod 12) andn > 17.
Definef : E(EL(kC,,)) — {1,2,3,---,(2n — 3)k + 3} as follows;

Case la: Fori =1

n—2j 2, if1<j<[2]-7

fleig) =35 — 3|2 +15, if [2] —4<j<[2] -1,

n + 3, if j = 5],
3n — 27, if |5] +1<j<n-3,
\3n—2j—2, ifn—2<j<n.

Case2a: For2 <<k -1

.

(2n—3)i—2n+2j+5, if1<j<|2]

(2n—3)i+n—2j+3, if|2]+1<j<10[Z]+3,
fleiy) =
(2n—=3)i+n—2j+2, if10|E]+4<7< n—-2,

\(2n—3)i—n+3, if j=n—1.

Case 3a: Fori = k

(

(2n —3)i—2n+2j+5, if1<j<|2]

fleig)=q@2n—3)i+n—2j+4, Iif 2] +1<j <28

m—3)Yi+n—2j+3, if&B41<j<n—1.
( J + 3, S J

\

The induced vertex labels are as follows:
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Case 1b: Fori =1

n—2j+1, if1<j<|2]-T,

10, if j = 5] —6,

4, if j=15] -5,

3 -33)+ 14, if [3)—4<i<(3] -1,
[ (vig) = <

n+5, if j =[5],

3n—2j+1, if [5]+1<j<n-3,

n+4, if j=n—2,

\3n—2j—1, ifn—1<j<n.

Case2b: For2<i<k -1

.

(2n—3)i—2n+2j+4, if2<;j<[2]-1,

) (2n —3)i+n—20|%] -5, ifj=|%],

[ (i) =
(2n —3)i+n —2j +4, if [5]+1<7j<10[35]+4,
((2n =3)i+n—2j+3, if 10[{5] +5<j<n—1

Case 3b: Fori = k

(

(2n —3)i —2n+2j+4, if2<j<|2]

prpa) = 4 BB =g,

(2n—3)i+n—2j+5, if[3]+2<) <28

| (2n —3)i+n—2j+4, if 20 <j<n-—1.

It can be easily verified thgtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 5(mod 12) andn > 17, is SVM. O
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5.3.7 Linear EL(kC,) - Snake,n = 6(mod 12) andn > 18

Theorem 5.3.7.Let EL(kC,,) be a linear edge linked cyclic snake, where= 6(mod 12)
andn > 18. Then ELEC,,) is SVM.

Proof. Let EL(kC,,) be alinear edge linked cyclic snake, where: 6(mod 12) andn > 18.
Definef : E(EL(kC,)) — {1,2,3,---,(2n — 3)k + 3} as follows;

Case la: Fori =1

.

n—2j—1, ifl1<j<2-6,

27 —n+11, |if

N3

ot
IA
<
IN
N3
|
W

2] —n+12, |if

0|3

(]
IN
.
IA
0|3
|
—_

fleij) =
n+ 2, ifj =3,

3n—2j+1, f2+1<j<n-2

3n—2j—1, ifn—-1<j<n.
\

Case2a: For2 <<k —1

/

(2n—3)i—2n+2j+5, f1<j<2—1,
(2n —3)i—n+7, if j =2,
fleig) =S @n—3)i+n—2j+4, if2+1<j<n—21i(2]+3),

(2n—3)i+n—2j+3, ifn—3([2]+1)<j<n-3,

(2n—3)i+n—2j+2, ifn—-2<j<n-1L1

Case 3a: Fori = &

;

(2n —3)i—2n+2j+5, fl1<j<m

fleij)=q@n—3)i+n—2j+5 if2+1<j<|]

(2n—3)i+n—25+4, Iif

—

SMlyl<j<n—1

\

The induced vertex labels are as follows:
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Case 1b: Fori =1

n—2j, if1<j<2-6,

6, if j =5 -5,

2j—n+10, if2—4<j<2-3
oo 2 —n+11, ifr-2<j<2-1,

n+4, ifj =735,

3n—2j+2, fZ4+1<j<n—2

n-+3, if j=n-—1,

n, if j =n.

Case2b: For2<i<k -1

2 — 3)i — 2n + 2j + 4,

)
(
(2n —3)i — & 44,
(2n—3)i+n—2j+5 if2+1<;<i
(

| (2n —3)i+n—2j+4, if2+1<j<n-—1

Case 3b: Fori = k

;

(2n—3)i—2n+2j+4, if2<5<3,
(2n —3)i — 5 + 4, ifj=5+1,
[ (vig) =
(2n—3)i+n—2j+6, if2+2<j<[3]+1,
(2n—3)i+n—2j+5, if[Z|+2<j<n-1

It can be easily verified thgtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 6(mod 12) andn > 18, is SVM. O
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5.3.8 Linear EL(kC,) - Snake,n = 7(mod 12) andn > 19

Theorem 5.3.8.Let EL(kC,,) be a linear edge linked cyclic snake, where= 7(mod 12)

andn > 19. Then ELEC,,) is SVM.

Proof. Let EL(kC,,) be alinear edge linked cyclic snake, where: 7(mod 12) andn > 19.
Definef : E(EL(kC,)) — {1,2,3,---,(2n — 3)k + 3} as follows;

Case la: Fori =1

n—2j—2,
7,
L,
fleig) = 35 — 3|2 + 15,
n+ 3,
3n — 27,
[3n—2j -2,

Case2a: For2 <<k -1

(

(2n — 3)i —n +8,
fleij) =

\

Case 3a: Fori = &

(

fleij) =

\

(2n — 3)i — 2n + 2j + 5,

(2n —3)i +n — 25 + 3,
(2n —3)i+n—2j+2,

(2n —3)i+n—2j +1,

(2n — 3)i — 2n + 2j + 5,
(2n —3)i+n—2j +2,

(2n—=3)i+n—2j+1,

108

if j = [5] -6,

if j = 15] =5,

if 3] —4<ji<|[3]-1,
if j =151,

if [2]+1<j<n-3,

ifn—2<j<n.

if1<j<|2) -1,

if j =151,

if L§J+1§j§L§J+L§J—1,
if L§j+L§J§j§n—4,

ifn—-3<n-1.

if1<j<|%]-1,
if [2] <j<sn+l5])-1,

ifs(n+2])<j<n-—1



The induced vertex labels are as follows:

Case 1b: For: =1

n—2j5+1, iflSjSLgJ—Z

10, if j = L%J — 6,

4, if j=15] -5,

3 - 313) +14, it [2) —4<j< (3] -1,
f(vig) =

n+ 5, if j =51,

3n—25+1, if [5]4+1<j<n-3,

n+4, if j=n—2,

3n—27—1, ifn—1<j<n.

Case2b: For2<i<k -1

.

(2n—3)i—2n+2j+4, if2<j<[2] -1,
(2n—3)i—2L§J + 4, if j = L%j,
frlog) = @n—3)i+n—2j+4, if|2]+1<5<|2]+2],

(2n—=3)i+n—2j+3, if [2]+[2]+1<j<n-3,

(2n—3)i+n—27+2, fn—-2<j<n-1.

\

Case 3b: Fori = k

/

(2n —3)i —2n+2j+4, f2<j<[2]—1,

o) = 4 Bl =1
Tl en-gien—2+3 W3 +1<5< o+ (2),

(2n=3)i+n—2j+2, ifjn+[5))+1<j<n-1

It can be easily verified thgtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labgls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 7(mod 12) andn > 19, is SVM. O
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5.3.9 Linear EL(kC,) - Snake,n = 9(mod 12) andn > 21

Theorem 5.3.9.Let EL(kC,,) be a linear edge linked cyclic snake, where= 9(mod 12)
andn > 21. ThenEL(kC,,) is SVM.

Proof. Let EL(kC,,) be alinear edge linked cyclic snake, where: 9(mod 12) andn > 21.
Definef : E(EL(kC,,)) — {1,2,3,---,(2n — 3)k + 3} as follows;

Case la: Fori =1

fleig) =35 —3[2]+15, if [2] —4<j<[2] -1,

n + 3, if j =151,
3n—25+2, if[5]+1<j<n-2
\3n—2j, ifn—1<j<n.

Case2a: For2 <<k -1

(2n — 3)i — 2n + 6, ifj=1,
(2n—3)i—2n+2j+5, if2<;j<[2]-1,

fleij) =9 (2n —3)i —n +5, if j = [2],
(2n—=3)i+n—-2j+5 [ +1<;<24+[5]-1,
(@n=3)i+n—2j+4, H3+[3]<j<n-1L

Case 3a: Fori = &

(2n—3)i—2n+2j+5, f1<j<[2]-1,

fleig)=q@n—3)i+n—2j+4, if[2]<j<itn+[2]) -1,

(2n—3)i+n—2j+3, fin+[2])<j<n-—1

\
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The induced vertex labels are as follows:

Case 1b: For: =1

n—27+1,
10,
4,
f(vij) =435 — 3[5] + 14,
n 4+ 5,
3n — 25+ 3,
\4n -3 +1,

if1<j<[2]-T,

it j =216,

it j=[2] -5,

it (2] —4<j<[2] -1,
it =21,

it [2]+1<j<n-2,

ifn—1<j<n.

Case2b: For2<i<k-1

(

; 2n
2n —3)i — ' + 4,

2n — 3)i + 4,

(
(
(2n —3)i+ 3,
(
(
(

Case 3b: Fori = k

(

3 — 2] 44
oy BT
(2n —3)i+n—2j+5,

((2n—3)i+n—2j+4,

2n — 3)i — 2n + 2j + 4,

2n — 3)i+n — 25 + 6,

2n —3)i+n—2j+5,

(2n — 3)i — 2n + 2j + 4,

if2<j<[3]-1,

if j =131,

if j=[5]+1andi+ 1=k,
if j=[2]+1andi+1+# £k,
if [2]+2<j<2+][2],
if2+[2]+1<j<n-—1
if2<j<[5]—1,

if j =131,

if [51+1<j<3(n+[3])

if s(n+[2])+1<j<n-1

It can be easily verified thgtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labgls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 9(mod 12) andn > 21, is SVM. O
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5.3.10 LinearEL(kC,) - Snake,n = 10(mod 12) andn > 22

Theorem 5.3.10.Let EL(kC,,) be alinear edge linked cyclic snake, where= 10(mod 12)
andn > 22. Then ELEC,,) is SVM.

Proof. Let EL(kC,,) be a linear edge linked cyclic snake, where= 10(mod 12) and
n > 22.
Definef : E(EL(kC,)) — {1,2,3,--- ,(2n — 3)k + 3} as follows;

Case la: Forz =1

.

n—2—1, ifl1<j<2-6

2 —n+1l, f2-5<j<2-3

2 —n+12, ffr—2<j<n_1
fleij) = < ’ ’

n-+2, if j =3,

n—2j+1, f5+1<5<n-2

3n—25—1, ifn—-1<j<n.
(

Case2a:For2<i<k-1

;

(2n—3)i—2n+2j+5, f1<j<2

fleig) = (2n—=3)i+2n—-2j+5, if3+1<5<3[F+1,

(2n—=3)i+n—-2j+4, if3[2<j<n—-1

\

Case 3a: Forz = k

4

(20— 3)i—2m+2j+5 f1<j<n,
fle)) = (@n=3)i+2n—2j+5, if2+1<j<3[3]+1,

o —3)id+n—2j+4, if3]2]<j<n-—1.
( ) J 21 <

\

The induced vertex labels are as follows:
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Case 1b: Fori =1

2 —n+10, f2—4<j<2-3
% —n411, fr-2<j<-1,
fo(vij) =
n + 4, ifj=%
3n—2j+2 if24+1<j<n-—2
n—+ 3, if j=n-—1,

n, if j =n.

Case2b: For2<i<k -1

(

(2n—3)i—2n+2j+4, f2<;j<2-1,

(2n —3)i—n+ 5] +5, ifj=7%,

fig) =9 @n—3)i+n—2j+5 #F2+1<j<n—3(2]+1),
(2n—3)i+n—2j+4, fn—3(2-1)<j<n-2

(2n —3)i —n + 5, if j=n—1

Case 3b: Fori =k

.

(2n —3)i —2n+2j+4, if2<j<m

(2n—3)i— 1+ 4, it j =1+
[ (viy) =
<

(2n—=3)i+n—-2j+6, if5+2

(2n—=3)i+n—2j+5, i3/ +3<j<n-1

It can be easily verified thdtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 10(mod 12) andn > 22, is SVM.. O
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5.3.11 LinearEL(kC,) - Snake,n = 11(mod 12) and n > 23

Theorem 5.3.11.Let EL(kC,,) be alinear edge linked cyclic snake, where= 11(mod 12)
andn > 23. ThenEL(kC,,) is SVM.

Proof. Let EL(kC,,) be a linear edge linked cyclic snake, where= 11(mod 12) and
n > 23.
Definef : E(EL(kC,)) — {1,2,3,--- ,(2n — 3)k + 3} as follows;

Case la: Forzr =1

;

fleig) =35 —3[2] +15, if [2] —4<j<[2] -1,

n + 3, if j =151,
3n—25+2, if[5]+1<j<n-2
\3n—2j, ifn—1<j<n.

Case2a: For2 <i:<k-—-1

(

(2n—3)i—2n+2j+5, if1<;j<[2]-1,

(2n — 3)i —n + 8, if j =131,

fleij) =9 @n—3)i+n—2j+5 if[2]+1<;j<10[2]+8,
(2n—3)i+n—2j+4, if10[&]+9<j<n-3,

(2n—=3)yi+n—2j+3, fn—2<j<n-—1

Case 3a: Fori = k

;

(2n—3)i—2n+2j+5, if1<j<[2] -2

flegg) =9 @n—3)i+n—2j+2 if[2]-1<j<9|L]+7,

m—3)i+n—2j+1, if 9&|+8<j<n—1.
( J J

\
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The induced vertex labels are as follows:

Case 1b: For: =1

n—2j+1, if1<j<[2]-7,
10, if j=[2] -6,
4, if j =[2] -5,

fuig) =35 —3[2] +14, if [2] -4<j<[2] -1,

n+5, if j =51,
3n—25+3, if[5]+1<j<n-2,
\4n—3j—|—1, ifn—1<j<n.
Case2b: For2<i<k -1
(
(2n —3)i —2n + 25 + 4, if2<j;<[g]-1,

(2n —3)i —20[ %] +n—13, if j=[2],

f(wig) =4 (2n—3)i+n—2j+6, if [2]+1<j<10[2]+9,
(2n —3)i+n —2j+5, if 10/35] +10<j5<n -2,
(2n —3)i —n + 6, if j=n—1.

\

Case 3b: Fori =k

(

2n—3)i—2n+2j+4, if2<5<[2] -2

(2n—3)i—|_%1—|—3, ifj:f%-\—l,
fr(vig) =
(2n—3)i+n—2j+3, if[2]<j<9[2]+s,

(2n—=3)i+n—2j+2, f9[&]+9<j<n-1.

It can be easily verified thdtis a Super Vertex Mean labeling as it is an injective mapping
and the set of edge labels and induced vertex labdls 5 3, ..., (2n — 3)k + 3}. Therefore
linear EL(kC,,) - snaken = 11(mod 12) andn > 23, is SVM. O
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5.4 Conclusion

We have so far successfully proved that all the edge linkeshli cyclic snakes are Super
Vertex Mean graphs. A researcher is further encouragedtémpt to prove the SVM -
behaviour of non-linear edge linked cyclic snakes. In theecaf non-linearE L(kC,,) -

snake, the value of, for eachi may not be equal to% | — 1 and[2]| — 1.
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Chapter 6

SVM Graphs of Order <7

For a researcher a natural quest arises to examine all thbgup to a certain order as to
find out how many of them fall into the category of SVM - graphkerefore, in this chapter
we investigate the SVM - behaviour of all graphs up to orfgland all regular graphs up to

order?7.

6.1 Preliminary Observations

6.1.1 Necessary Condition

If d(v) = 0 for any vertexv of G then it is called an isolated vertex andl{fv) = 1 then
it is called a pendant vertex. From the definition of Supeitd&eMean labeling it is clear
that a graph containing a vertexwhosed(v) < 1 cannot be a Super Vertex Mean graph.
Therefore, necessarilieg(v) > 2 for all verticesv of a SVM graphG. It is obvious that no
tree is a SVM graph. In this chapter, we discuss only thosphgr@ with d(v) > 2 for alll

verticesv of GG.

6.1.2 Regqularity of Graphs

If d(v) =r, for every vertexv of a graphG, thenG is called ar-regular graph. From

the above observation, we know that no zero reguldri@gular graph is an SVM graph. A
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(p, q) - graphG can ber-regular graph if and only if x r is even. It is derived from the fact
that 'Odd order graphs cannot be odd-regular graphs [Theare] of [8]. Consequently

the number of edges ofraregular graph i$%37), i.e.,q = (57).

6.1.3 Cycles are SVM

All the cyclesC,,,n > 3 are2-regualar graphs as the degree of each vertéx la our
previous chapters we have proved that all cyctésfor anyn > 3, exceptC, are SVM -

graphs.

6.2 List of Regular Graphs of Order < 7

6.2.1 Oforder3

When order of a grapty is 3, there is just on@-regular graph. This is a cycle of length

3, known as(’; or K3. We have already proved that it is an SVM - graph.

6.2.2 Oforder4

There are two regular graphs of ordenf whichC is 2-regular andk, is 3-regular. We

have proved that’, cannot be a SVM - graph.

6.2.3 Of order5

We have al-regular graphi’; with 10 edges and &-regular graphC; with 5 edges of
order5, of which C5 have been proved to be a SVM - graph.

6.2.4 Oforder6

There are a total of regular graphs of ordet. They areCy, the disjoint union of two
Cj's, both of which are-regular, two non-isomorphig-regular graphs witlh edges each, a

4-regular graph witl 2 edges and the-regular graphi’s with 15 edges.
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6.2.5 Oforder7

The number of regular graphs of ordeis 5. They areC’;, disjoint union ofC; andCy,
both of which are2-regulars, two non-isomorphitregular graphs witi4 edges and the
complete graplk’;, which is6-regular.

Now we proceed to prove that all these regular graphs arerSigreex Mean graphs,

exceptingC,. Before that we discuss the behaviour of disjoint union oppsa

6.3 Disjoint Union of Graphs

The disjoint union ofn copies of a grapli is denoted bynG. The union of two graphs
Gl andG2 is a grathl U G2 with V(Gl U Gg) = V(Gl) U V(GQ) andE<G1 U Gg) =
E(G1) U E(Gy).

Theorem 6.3.1.1f G is an SVM - graph, so is:GG and if G; and G, are SVM graphs, so is

(G; U G5. The converse is not true.

Proof. For the first part of the theorem, it is enough to prove thétiandG, are two SVM
- graphs, therds; U G, is also SVM.
Let G1(p1,q1) andGa(po, g2) be two SVM graphs with Super Vertex Mean labelingand

g respectively on them. Let,
E(Gy) ={ei: 1 <i<q},V(Gy) = {u; : 1 <i < pu},

E(Ga) ={e;: 1 <1< o}, V(Go) = {u; : 1 i <o}

Defineh : B(G1 UGy) — {1,2,3,-- ,p1 +q + D2+ q2} by
h(ei) = flei), for L <i < qu, h(es) = p1+qu+ g(eg), for L<i< g
Now we show that: is an injection. Let,

h(ei) = h(e;) = fle:) = f(e;)
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Since,f is an injection, we have;, = e;.

Let, h(e;) = h(e}) = p1 +q + g(e}) = p1 + @ + g(€))

Since,g is an injection, we have,

Thereforeh is also and injection.
Suppose
h(el) = h*(u})

i j
=p+aq+g(€) =p+a+g"(u))
= g(€}) = g"(uj)

which is a contradiction agis Super Vertex Mean labeling.
Sohis a SVM labeling.

To prove the second part of the theorem, we prove that althélygs not a SVM - graph,
2Cy andC3 U Cy are SVM - graphs.

Also we prove the general case tliatu C,, is SVM for all m > 3.
We know thatC,,, is SVM graph for allm > 3 andm # 4. Therefore it is enough to prove
thatCs; U Cy and2Cy are SVM - graphs.
Case 1:C3 U Cyis a SVM - graph.
Let,

E(Cs) = {e1,ea,€3}

and

E(C4) - {ella 6/27 eg? eil}

Definef : E(C3UCy) — {1,2,3,---,13,14} by

fler) =1, fea) =3, fles) =7



It is clear thatf is a Super Vertex Mean labeling 6% U Cy. ThereforeCs U Cy is SVM
- graph, thouglit’; is not. u

Example 6.3.2.Super vertex mean labeling 6§ U C, is shown in Figures.1.

11
O—®
6 14
8 1
10

Figure 6.1: Super vertex mean labelinglafu C,

Case la. General CaseC’; U C,, is SVM for all m > 3 includingm = 4.
All cycles, exceptC,, are SVM - graphs and so their union, but thénu C is a SVM -
graph. So, itis a clear fact that U C,, is SVM for all m > 3. But we want to prove it in
an alternate way without deriving from the above theoremtaedact thatC; andC,, are
SVM - graphs for alin +# 4.

Proof. There is nothing to prove in the case of adds all odd cycles are SVM - graphs and
their union is also SVM. Without loss of generality, we assutmatm is even andn > 4.
Letm = 2n for somen > 2.

Let

E(Cs) = {61,62763}
and

B(C) = {€), chyeev ey = o}
Definef : E(CsUC,,) — {1,2,3,--- ,2m +6=4n+6} by
fler) =1, f(e2) =3, fles) =7

121



(

6 ifi=1

fle)) =< 4i+2 if2<i<n+l

n—4i+11 ifn+2<i<2n=m
\
Thusf is a super vertex mean labeling@f U C,, for all evenm > 4, and it is an SVM

graph. O

Case 2:2C'; is a SVM - graph.

Proof. Let C, andC’) be two cycles of length.
Let

E(C4) — {617 €2, €3, 64}

and
E(Cy) = {€), ey, €5,¢4}

Definef : E(C,UC)) — {1,2,3,--- ,15,16}

by
fler) =1, f(e2) =3, f(e3) =5, f(es) = 10
fley) =17, fles) = 11, f(ef) = 14, f(e}) = 16
Then f is a Super Vertex labeling @'y, and2C), is a SVM - graph. [

Example 6.3.3.Super vertex mean labeling €', is shown in Figure 6.2.

Corollary 6.3.4. mC, is a SVM - graph for all evem > 2.

Proof. By the above theorem, we have proved th@i and union of any two SVM - graphs
is a SVM - graph.

Any evenm is a multiple of2, and thereforenCy is a union of% times of2C,. Or,mCy,
for m > 4, m = 0 (mod 2) is equal to(m — 2)C, U 2Cy, where both of which are SVM -
graphs. Thus the corollary. O]
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O———0O I

Figure 6.2: Super vertex mean labeling6f;.

Corollary 6.3.5. Disjoint union of any number of cycles of any length, excéps a SVM -
graph.

Proof. Since all the cycles except, are SVM - graphs, by the above theorem, their unions

are SVM - graphs. Thus the corollary. O

Corollary 6.3.6. When the disjoint union of any number of cycles of any lengitagnsC,
itis a SVM - graph when,
1. There are even number 6f, in the union, or

2. There exists at least or&; in the union.

Proof. 1. If there are even number @f, in the union, by the above corollary 1, union of
these is SVM graph. All other cycles are SVM graphs. Theeefioe union of both is a SVM
graph by above theorem.

2. If there exists at least on€; in the union of cycles, then the union of thig and
any oneCy, if C4 has an odd occurrence, is a SVM - graph. Otherwisepccurs in even

number of times, and their union is proved to be a SVM - graph. O]
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6.4 Regular Graphs as SVM - Graphs

Theorem 6.4.1.Regular graphs of ordex 7 and Petersen graph are SVM -graplhig,being

the only exception.

6.4.1 Petersen graph

Given in Figure 6.3 is an SVM labeling &f — regular graph of ordet0, known as
Petersen Graph.

Sincef(U)U f*(V) ={1,2,3,---,24,25}, itis a SVM - labeling. While labeling Petersen

Figure 6.3: SVM labeling of Petersen Graph.

graph, it is interesting to observe that the sum of all veldbels is% of the sum of all vertex
labels.

i.e.,

By J(e) X2
= - (Bt

veV(G)
It happens because when we calculate the induced vertekdideh is rounded up
average of the labels 8f— edges that are incident on that particular vertex, we censice

edges twice.

124



Being a SVM labeling, sum of all these labels is,

((P+Q)(Z92+Q+1))_ S re+ Y fe

veV(G) e€E(Q)

_ (ZeEE(G)?)f ) Z f
_ (ZeeE(G)f( e) X 5)

3

Here for Petersen graph, the totaBix, and sum of all edge labels 195 and that of all
vertex labels i430, perfectly in agreement with the above observation.

This need not be a necessary phenomenon for all types of S\é#elihg of regular
graphs. But this happens true for most of the regular graphshwire have examined. This

fact is used as a hint for labeling the following graphs ofesrap to7.

6.5 Regular graphs of orders.

The only2— regular graph of ordet is the cycleCs;. We know that”; is a SVM - graph.

6.6 Regular graphs of order4.

Regular graphs of order are Cy, which is2 - regular andK,, that is3 - regular. We
know thatC', is not a SVM - graph. We prove that- regular graph of ordet, i.e., K, is a
SVM - graph.

By above observation,

((p+Q)(p2+Q+1)): S re+ Y fe

veV(G) e€E(Q)
_ <Z€€E<G>3f () > + Y fle)
e€E(Q)
B ZeeE(G) fle) x5
B 3
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In this case of,, we have,

3 [((p+qp+q+1)
> f(e):5><( )

and,

So we can select the sgt, 5,6, 7}, as the vertex label set, the sum of whose elements is
equal to22. Consequently the edge label se{is2, 3,8,9,10}, sum of whose elements is
33. We have partitioned the positive integers upte ¢, (here it is10) in the above manner
by the following logic. These number$,to 10, have to be distributed into two mutually
disjoint sets in such a way that except ahpumbers that are reserved as induced vertex
labels, have to be clubbed ihsets of3 elements k4 is a3 - regular graph) and have to
appear exactly twice without two numbers of one set comiggtteer in some other set. itis
because two vertices are connected by a single edge. Andomplete graph likg(,, each
vertex is connected by an edge to every other vertex of thehgra

Itis impossible to include the numbers2, 9 and10 in vertex label set. While calculating
the average we cannot obtain one of these numbers as theeupdaverage of any
numbers up tal0, without including the same number. Using the same numbtr &g
vertex label and edge label is ruled out by the definition oBMabeling.

Therefore,

{1,2,9,10} C f(FE)

The sum of these numbersi8. If we take two more numbers in the edge label g€t (

has6 edges), so that the sum equal3®y we are done. By careful way of inspection, we
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4 7
8 10
3 9
5 6
2
9
4 7
1 3
2
8
5 6
10

Figure 6.4:K, is SVM - labeled ir4 different ways.

have found that the only possibility is to include the nunst3eands in to the above set.
So,
f(E)={1,2,3,8,9,10}

and,
(V) =1{4,5,6,7}

Using these sets, we can laki€] in 4 different ways as shown below in Figure 6.4.

6.7 Regular graphs of order5

Ther - regular graphs3 < r < p—1 of orderp = 5 areCs, which is a2— regular graph,
and K5 which is4— regular graph. The graph being of an odd order, there camany odd
regular graphs. In our previous chapters we have provedthat cycle of lengtth is SVM

graph. Now we proceed to prove thist, the complete graph of ordéris SVM graph.
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We observe that any complete graph for somen > 3 is an — 1 regular graph.
Therefore it haé”(;li‘l) edges.

Therefore,
nx(n—1)
p+qg=n+—r—>
2
Equivalently, for any-— regular graph,
nxr
ptgq=n-+
2
nx (r+2)
B 2
Whenr =n — 1, we get
nx (n+1)
For K5,
5 X6
ptqg=——=15

As in the case of{,, here

v Ze E(G f(e) X 2
> ) = ==
veV(Q)
may be true. It is because every edge is counted twice whdefyrthe induced vertex label
which is the rounded up average of labelsil@dges incident on that particular vertex.

Therefore,

(p+a) x(p+a+l) _ S e+ Y fe)

2
VeV (G) e€E(G)

2 (p+gxp+gtl)
= D fl)=3x 5
e€E(Q)
1) 15x1
Now, (p+q)><ép+q+ ): 5;( 6:120
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> fle)=80

e€E(Q)

> fv)=40

veV(Q)
From the sef1,2,3,---,14, 15}, the subse{1, 2, 14, 15} has to be a subset ¢gf(E)

in SVM labeling. If 3 becomes a vertex label, thénand6 cannot become vertex labels
because whes and6 or 3 and5 become vertex labels, then amoh@ 11, 12 and 13, only
three numbers could be chosen as induced vertex labels.

For example,

4

1+7—I—8+9)
4

If we selectl0 and13 as the next two vertex labels then oniliycan be the fifth one,

6 = Round (

ie.,

13:R0und(9+12+14+15>

4

11+12+14+15>
4

13 = Round <

Then

13:R0und(9—|—12+14+15)

4
The remaining numbers that could be used to get rounded upgevef10 and11 are

2,4,5,7,8,12,14 and 15, and they can be classified in3csets which appeared elsewhere.
So we cannot have any option to have rounded up average ahd 11 without repeating
any numbers which already appeared in pair.

If we selectl1 and13 as vertex labels where,

9+12+14+15>
4

13 = Round (

or,

10+ 12+ 14+ 15
13:R0und< tler Ay )

4
then12 cannot be the fifth vertex label0 is already ruled out to be the vertex label with

as another vertex label.
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Therefore,13 has to be an edge label ah@ 11 and12 can be vertex labels along wigh

Here t00,12 has only three options left,

441 144+1
12:Round( + 3—2 * 5)

12:R0und<50r6+13+14+15)

4
7+13—|—14—1—15)

4
This implies10 and11 are obtained as averages by making use of any one of the nsimber

12 = Round (

amongl3, 14 and15.

For example,l1 cannot be made a vertex label without repeating any one cdllbge
numbers.

Therefore wher8 becomes a vertex label, the only next vertex label cam be any
number greater than. By continuing our inspection in a similar way we get the polesi
sets which can be vertex label set as follows;
1.{3,7,8,10,12}
2.{3,7,9,10,11}
3.{4,6,7,10,13}
4.{4,6,7,11,12}
5.{4,6,8,9,13}

6. {4,6,8,10, 12}
7.{4,6,9,10,11}

8.{6,7,8,9,10}
9.{6,7,8,9,11}
It is interesting to note that except thé set, all the others follow the rule,
v 1
> W =5x D fle)=40
veV(Q) e€cE(Q)

Therefore for - regular graphs, the condition

> rw=2x Y e

veV(G) e€E(G)
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is not a necessary condition, but only a hint to SVM labeling.

Example 6.7.1.Given below in Figure.5 are the pictorial representations of nine different
SVM - labelings off;.

6.8 Regular graphs of order6

Regular graphs having no isolated or pendant vertex of drdez the cycle(’s and2C},
which are2 - regulars,K’; 5 and another graph with edges, both of them are- regulars,
the octahedral graph witl2 edges, which ig- regular and the complete graph;. In total
there are non-isomorphic r-regular graphs of ordgmwhere2 < r < 5.

We have already proved th@t and2Cs5 are SVM graphs. We show now that; ; is a SVM
graph.

6.8.1 Kj;

For K33, p=6andqg =9.
Therefore,
f<E>UfU(V) = {172737"' 714715}

While inspecting the possibility of SVM labeling @f; 5 we have to keep the following
in mind:
1. Partition the above set into two sets, keeping the hinlaioeling - regular graphs, i.e.,
D veviey (W) = 2 x D cen(c) f(€)
2. Clearly fv(V') contains elements ang(E) has9 elements.
3. Now the seff(FE) is distributed into six sets ¢f elements each in such a way that,
3. a) The rounded up average of each set is one of the numb#e Betf”(1"). These
numbers are not repeated.
3. b)These six sets form two partitions, each partition @i sets and no number in one

set of one partition is repeated in another set of the santiiqar
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Figure 6.6: Pictorial representation of SVM - labelings6f;

3. ¢) All the three numbers in one set of one partition areibisted equally in each set of
the second partition.

Following above directions we form six subsetsfoF) as given below;
{1,2,6},{4,7,12},{11,14,15} and {1,4,11},{6,7,14},{2,12,15} whose rounded up
averages arg, 8, 13, 5,9 and10 respectively.

Note that unions of the first three sets and the last thre@asetsaving the same elements,
the only difference being that two elements of any set do ppear together in any other
set. The first three sets and the last three sets in themdelvedwo different partitions of
the setf(F).

Example 6.8.1.The above labelings are shown pictorially in Figuig. One more SVM -

labeling of K5 5 is given in the same Figure.
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6.8.2 Another3-regular graph of order 6

There is anotheB - regular graph that is non-isomorphic f6; ; with 9 edges and
vertices.Therefore we cannot use the same method that wdrutige case of the previous

graph. The SVM labelings of this graph is shown below in Fegur.

3 2
_J/
5
1
15
11
13
6
4

12\ (11
15

Figure 6.7: SVM - labelings of anoth&fregular graph of ordes

6.8.3 4-regular graph of order 6 — Octahedral graph

There is yet another graph of ordeand havingl2 edges, which is & -regular graph.
This graph is known as Octahedral graph. For this graph,

p+q=18
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(p+a)xptre+l) -
2
o 2
Z fo(v) :;X Z f(e)
veV (G e€E(G)
2
P EDIRIC
e€cE(Q)
171 = 3 « > fle)
2
e€E(GQ)
_ 17
> s S
veV (G

Using this hint we can partition the numbers up &into two sets as given below;
f(E)=1{1,2,4,5,6,7,12,13,14, 15,18}

fo(vV)=13,8,9,10,11,16}

where f(E) containsg elements and”(V') hasp elements. The elements ¢{ £) are
repeated exactly once to find the rounded up average of faubars off(E), in order to
obtain the elements ifi* (V). Care should be taken so as not to place two numbers together
while finding a second rounded up average. Thus we find thettliegular graph of order

6 too is a SVM - graph with the SVM - labeling as shown in Figare

6
8

18

17

14

15

10

13

Figure 6.8: SVM - labeling of d-regular graph of ordes — Octahedral Graph
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6.8.4 The Complete graphk

Now we have the task of labelinys, the complete graph of ordér Being a5- regular

graph the hint that we could use is that,

S =2x Y fle)

VeV (G) e€E(G)

Cﬂll\)

The total sum of all the numbers upjg-¢, i.e., up to21 is 231, wherep = 6 andg = 15.
By the definition of SVM - labeling, we have,
81= Y [+ Y o)
veV(G) c€E(G)

This implies that,

ol 3

X Z f(e) =231

231 5
3 fle “2 165

e€E(G)

and,

S e 231><2 66

veV(Q)
So we partition the numbers up 2@ into two sets,

f(E)=1{1,2,3,5,6,7,8,9,14,15,17,18,19, 20, 21}

fo(V)=44,10,11,12,13,16}

havingq andp elements respectively and the respective sum of its menfeeng 165 and
66.

The other aspects are also kept in mind as in the previous addabeling regular and
complete graphs.

In a complete graph’s SVM - labeling, tHe — 1) elements off (£) that are taken to
calculate the rounded up average (in order to get one of #reezits off”(1)) are used a
total of (n — 1) instances. But they are used one at a time, and without regeathereas
in ar-regular graph’s labeling only - elements are used only in any instances, one at a

time and without repeating. Thus we obtain a SVM - labelinggfas shown in Figuré.9.

136



14
1
20 N

15

21

@

18

17

Figure 6.9: SVM - labeling of{g, the complete graph of ordér

6.9 Regular graphs of order7

There ares regular graphs of ordéf that do not have any isolated and pendant vertex.

They areC';, C3 U Cy, which are2 - regulars, two non-isomorphit- regular graphs andél’;,

the complete graph which - regular. We have already proved tlat andCs; U C, are

SVM graphs. Let us investigate the SVM behaviour of the régtaphs of ordef.

6.9.1 4 -regular graphs of order 7

We start withd - regular graphs of ordét. As in previous cases we can use the following

hint that;

2% ZeeE(G) f(e)
folv) =
ve%(:G) 4

and, since + ¢ = 7+ 14 = 21, we have

(r+q)(p+q+1)

=231
2

3 > fle) =231

J— e) =

2

e€E(G)

> o)+ fle) =231
veV(G) e€E(G)
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2 231
S fle) =T 1

e€E(Q)

> ) =77

veV(Q)
So we partition the numbers up #a into two possible sets, havingandp elements

respectively;
f(B)=1{1,2,4,5,6,7,8,9,13,15,16,17, 18,20, 21}

(V) ={3,8,10,11,12,12, 19}

These two partitions give rise to two different labelings tiee two non-isomorphid-

regular graphs of ordéras shown in Figuré.10.

6.9.2 The complete graphi’;

Now we proceed to prove thaf; is a SVM graph.K; being a6 -regular graph of order

7 and each vertx is connected to every other vertex by a unidge,ave have to partition

the numbers up t8**Y since for a complete grapk,, p + ¢ = 2+,

i.e.,
7% 8

2
The hint that we could use as in previous cases is that

S P 2><2666E fe)

veV(Q)

=28

and, sincey + ¢ = 28, we have

(p+q)p+q+1)

= 406
2
4
3 X Z f(e) = 406
eEE
> 1 z Fle) = 106
veV(G) e€cE(G
406 3
3 fle “2 1015
e€cE(Q)
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Figure 6.10: Two non-isomorphit-regular graphs of ordérare SVM labeled

> ) = ? = 304.5

veV(G)

For our convenience, we take this as

> fle) =102

e€E(QG)

> fv) =304

veV(G)

Based on this, we obtain the following partitions of the nurshgto28
f(E)=1{1,2,3,5,6,7,8,9,10,11,14,17,18,20, 21, 22, 24, 25, 26, 27, 28}
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Fo(V) = {4,12,13,15,16, 19, 23}

havingq andp elements respectively.
Careful distribution of these numbers as various edge asaselkertex labels, keeping
the facts mentioned in earlier cases, we obtain the SVM iladpelf /7 as shown in Figure

6.11..

Figure 6.11: SVM - labeling of{;

6.10 Super Vertex Mean Graphs of Order< 5

Theorem 6.10.1.All the graphs of ordeK 5 having no isolated or pendant vertex are Super

Vertex Mean graphg; being the only exception.

We have so far proved that all the complete and regular grdpkeeptC,) of order up
to 7, are SVM graphs and graphs containing any isolated or péndatex are not SVM
graphs. In this section we examine all other graphs of oftdér and do not fall into the

above category of graphs.
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6.10.1 Of the order4

There are3 graphs withd(v) > 2 of order4, out of which a graph witlh edges fulfill our
requirement and so we examine its SVM - behaviour and finditlgt SVM - graph. Its

labeling is given in Figuré.12.

Figure 6.12: SVM labeling of a graph withedges and of order

6.10.2 Of the orderbH

Of the order5, there are altogethei0 non-isomorphic graphs witti(v) > 2. Among
those, the SVM - nature & more graphs needs to be investigated for our present stugly. W

have found that they are all SVM - graphs as shown in Figurg..

6.11 Conclusion

We conclude by stating that all the regular graphs of ordex 7 and all graphs having

no isolated or pendant vertex and orgeb, excludingC, are SVM - graphs.
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Figure 6.13:8 non-isomorphic Graphs of ordérare SVM.
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Chapter 7

On Construction of SVM - Graphs

In this chapter we will show that disjoint union of all SVM -aphs, especially cycles,
includingmC}, and those containing, in it, is SVM - graph, even thougfl, is not an SVM
- graph. We also construct some new SVM - graphs by joiningventices of a cycle”,
by a chord. We also discuss the SVM - behaviouPgfgraphs, thougl?, is not an SVM -
graph.

7.1 A Few Known Results

1. If Gisan SVM - graph, so ismG and if G; and G, are SVM - graphs, so isG; UGs.
2. Although C} is not a SVM - graph, 2C, and C3 U C; are SVM - graphs.

3. C3UC,, is SVM for all m > 3 including m = 4.

4. mCyis a SVM - graph for all evenm > 2.

5. Disjoint union of any number of cycles of any length, except’, is a SVM - graph.

6. When the disjoint union of any number of cycles of any length ontains Cy, itis a

SVM - graph when,

e there are even number 6f; in the union, or
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e there exists at least orfey in the union.

7.2 Disjoint Union of Cycles as SVM - Graph

we proceed to prove thatC, for all m > 2 is a Super Vertex Mean Graph.

7.2.1 mCyforall m > 2as SVM - graph

Theorem 7.2.1.mC, for all m > 2 is a Super Vertex Mean Graph

Proof. We know thatmC) is a SVM - graph for all evem: [Result 4]. So it is enough to
prove thatnCy is a SVM - graph for all oddr. For this we prove thaiC), is a SVM - graph.
Let Cy, C, andC'/ be3 cycles of length 4.

Let E(Cy) = {e1, eq,e3,e4}, E(C)) = {€}, €5, ¢e5, e, andE(CY) = {e, e}, €4, el

Definef : E(C,UC,UCY) — {1,2,3,...,23,24} as follows:

fler) =1, f(ea) = 3, f(ez) =5, fea) = 11,

fer) =T, f(eh) =10, f(e5) = 16, f(e}) = 21,
flef) =12, f(ey) =17, f(e3) = 22, f(e]) = 24.

And the induced vertex label set{8, 4,6, 8,9, 13, 14, 15, 18, 19, 20, 23}.
It can be easily verified that is a super vertex mean labeling.

Since disjoint union of any SVM - graphs is an SVM - graph, weehihe result. O

7.2.2 C,UC,forall m>3andn > 3as SVM - graph

Theorem 7.2.2.The graphC,,, U C,, is a SVM - Graph for alin > 3 andn > 3.

Proof. All cycles, exceptC, and their disjoint unions are SVM - graphs [Result 5]. So we
know that the graply’,, U C,, is a SVM - Graph excepting the case where the union contains

C,, or C, where eithern orn is equal to4.
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Letm = 4 and E(C,,) = {e1,ez,e3,e4} andV (C,,) = {v1,v2,v3,v4} Wherew;
eieiv1, 1 <1< 3anduvy = eqeq

Let £(C,) = {e}, €5, -+, el }, V(C)) = {v],v5,v5,- -+, v, } such thaw] = ee;,,,1 <
i <n—1andv, =e€
Herep=n+4& g=n+4andsop + q=2n+ 8.
We consider the following two cases;
Case 1.Whenn is even.
If n = 4, then we know tha2C), is a SVM - graph. Therefore let > 6.
Definef : E(C,, UCy) — {1,2,3,--- ,2n + 8} by

2i—1, f1<i<2+2

fleh) =
2i+8, f24+3<i<n.

fler) =n+4, flea) =n+7, fles) =n+13, f(es) =n + 11.
Clearly f is an injective function and

Thereforef is a SVM - labeling ofCy U C,,, wheren is even.
Case 2.Whenn is odd.

We know that whem = 3, Cy U C3 is a SVM - graph. So let > 5.
Definef : E(C4UC,) — {1,2,3,--- ,2n + 8} by

fler) =1, f(e2) =3, f(e3) =5, f(ea) = 11.

(

7, ifi=1,

10, if i =2,
feh) =48+ 2i, if 3<i<5,

4i — 2, if 6 <i <25

An +19 —4i, if 2 <i<n.
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Clearly f is an injective function and

Thereforef is a SVM - labeling ofCy U C,,, wheren is odd.
HenceC,, U C,, is a SVM - Graph for allin > 3 andn > 3. O

Corollary 7.2.3. Disjoint union of any number of cycles of any length is a SVNMapQ,
except the fact that’, is not a SVM - graph.

Proof. The result is obtained from the above two theorems. O

7.2.3 SVM - labeling method for union of SVM - graphs

LetGy, G, - -+, G, bem SVM graphs with SVM - labeling$,, f», - - - , f,, respectively.
By the above theorem we know th@; U G, U --- U G, is a SVM - graph. We discuss the
method of labeling this new graph.

Let G1 = (p1,¢1),Ga = (p2,42), G = (Pm, @) b€ them SVM graphs. Then
G UGy U---UG), hasp; +ps + - - - + p,, Vertices andy; + ¢ + - - - + ¢,,, edges.

Let e;,1 < @ < qe,l < @ < @, ,emil < i < g, and
v, 1 <@ < pr,v,1 < i< pg,-- ,um, 1 <1 < p, bethe edges and vertices of the graph
G1,Ga, - -+, G, respectively.

Defineg : E(Gi UG U...,G,) = {1,2,--- ;pr+p2+--+q@+q+- - +qn}as

follows:

g(elz’> = fi(ewn)
gles) =p1 + q1 + fale)

glesi)) =p1+ @ +p2+ ¢+ fs(es)

glemi) =p1+a+p+a@+ps+a+ -+ Pm+ G+ frnlem:)
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Then the induced vertex labels will be as follows:

9" (vii) = f1(v1s)

g’ (vi) =p1 + @1 + f3(v2)

" (vs)) =p1 +q1 +p2 + @2 + f3(vs;)

G (i) =p1+ @ +Dp2+@+Dp3+ a3+ + P+ G+ fro(Umi)

7.3 P?,n>3asSVM -graph

Theorem 7.3.1.The graphP? n > 3 is a SVM - graph.

Proof. Let P, be a pathuyus - - - u,,n > 3. ThenP? is a graph with the edge sét =

{ugug, ugug, - -+, Up_1Uy, U1ug, Uslly, - - -

edges.

, Un_ouy, +. Clearly P? hasn vertices andn — 3

Obviously P} is C3 whose labeling we have discussed already. Sa let 4. Define f :

E —{1,2,3,--- ,3n — 3} as follows:

f(Uiuz'H) =

fluuiye) =

L,

5,

31— 1,
31 — 2,
\3n — 3,
3,

31,
31+ 2
\3n — 5,

ifi=1,

if i =2,

if 3<i<n-—2andiisodd
if 4 <i<n-—2andiiseven
ifi=n-—1.

if i =1,

if 2<i<n-—3andiiseven
if 3<i<mn-—3andiisodd

if i =n—2.
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It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

2, ifi=1,

4, if i =2,

3i—2, if3<i<n-—2andiisodd
T (ui) =

31, if 4 <i<n-—2andiiseven

3n—6, ifi=n—1,

3n—4, ifi=n.
\

Clearly it can be proved that the set of edge labels and thecetiwertex labels is

{1,2,3,---,3n — 3}. O

7.4 Cycle related Graphs

In a graph(z, the distance between two verticeandv denoted byl (u, v) is the length
of the shortest path joining andv. Let H be a subgraph af’. Thendy(u,v) denotes the
distance between andv in H. In this section we find the SVM - labeling @f, together

with a chorduv such thatlc, (u,v) = 2,3,4,5,6 or 7

7.4.1 Cycle with a Chord connecting arc of distance

Theorem 7.4.1.Let C,, be a cycle of lengtm > 4 and letG be a graph obtained from
C,, by takingV (G) = V(C,,) and E(G) = E(C,,) U {uv} such thatdc, (u,v) = 2, where
u,v € V(C,). ThenG is a SVM - graph.

Proof. LetC,,,n > 4 be a cycleujus - - - u,u; and letu = u, andv = w,,. Thende, (u,v) =
2.
Let G be a graph obtained frofi, by takingV' (G) = V(C,,) andE(G) = E(C,,)U{uv}.

ThenG hasn + 1 edges ana vertices, making a total dfn + 1 elements.
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Let the edges of7 be such that
e = Uir1, 1 <i<n—1e,=uu & e,11 =uv = usuy,

The SVM labelings of graphs thus obtained fram Cs, Cs, C; and Cyy are shown in
the following Figure7.1.

11

Figure 7.1: SVM - Labeling of”,, U {uv},n = 4,5,6,7, 10 respectively.

Now we continue to discuss Super Vertex Meanness of reseajrdphs obtained in the
following two cases.
Case 1:Whenn = 0 or2(mod 3),n > 8

Definef : E(G) — {1,2,3,--- ,2n + 1} as follows,
(

1, if i =1,
5, if i =2,
fe) = 2042, if3<i< (%],
2i+3, if[2]+1<i<n—1,
3, if i =n,
6, ifi=n+1.
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It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

;

2, ifi=1,
4, if 71 =2,
frlu) =q2i+1,  if3<i<[L],
20+ 2, if[g]+1<i<n-—1,
2[5 +3, ifi=n.

.
Clearly it can be proved that the set of edge labels and thecetlvertex labels is

{1,2,3,--- ,2n+ 1}

Case 2:Whenn = 1(mod 3),n > 13

Definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

/

1, if i =1,

4, if i = 2,
flei) =47, if i =3,

9, if i = 4,

2i+2, if5<i<[2],

(
2i+3, f[2]+1<i<n-—1,

flei) = q 3, if i =n,

10, if i =n+1.

\
It can be easily verified that is injective.
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Then, the induced vertex labels are as follows:

2, ifi=1,
5, if i =2,
6, if i =3,
f(ui) = 48, if i =4,
2 +1, if 5 <i</[2],
2i + 2, f[g]+1<i<n-—1,
2[5 +3, ifi=n.

Clearly it can be proved that the set of edge labels and thecawlwertex labels is

{1,2,3,---,2n + 1}. Sincef is a Super Vertex Mean labeling;is a SVM - graph. [

7.4.2 Cycle with a Chord connecting arc of distancé

Theorem 7.4.2.Let C,, be a cycle of lengtm > 6 and letG be a graph obtained from
C,, by takingV (G) = V(C,,) and E(G) = E(C,) U {uv} such thatd., (u,v) = 3, where
u,v € V(C,). ThenG is a SVM - graph.

Proof. Let C,,,n > 6 be a cycleujus---u,u; and letu = w; andv = w,_5. Then
de, (u,v) = 3.

Let G be a graph obtained fro, by takingV' (G) = V(C,,) andE(G) = E(C,,)U{uv}.
ThenG hasn + 1 edges ana vertices, making a total afn + 1 elements. Let the edges of
G be such that

e =uir1, 1 <i<n—1,e, =uu &epr1 = uv = Uy, o

We prove the theorem in the following three cases.
Case 1:Whenn = 0(mod 3),n > 6
The SVM labeling of graph obtained fro@} is shown in the following Figuré.2.
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Figure 7.2: Super Vertex Mean Labeling@f U {uv}.

Whenn > 9 definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

;

24, if1<i<?
2i+1, if2+1<i<2n-2
fle)=Q2i+2 if2n—-1<i<n-3,

2i+1, ifn—2<i<n,

1, ifi=n+1.

\
It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

;

) —
sn+1, ifi=1,

2% —1, ifa<i<z

24, if2+1<i<2n-—2,
fo(wi) =

2i4+1, ifZn—-1<i<n-3,

An — 2 ifi=n—2,

2, ifn—1<i<n.

Clearly it can be proved that the set of edge labels and thecelvertex labels is

{1,2,3,-- ,2n + 1},
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Case 2:Whenn = 1(mod 3),n > 7
The SVM labeling of graph obtained fro@¥ is shown in the following Figuré.3.

10
13

15

3

Figure 7.3: Super Vertex Mean Labeling@f U {uv}.

Forn > 10 definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

(

2% 1, if1<i<2,

21, if 3 <4 <[%],

241, if[2]+1 <i<2[2]-3,
2i+2, if2[2] -2 <i<n-3,
20+ 1, ifn—2<i<n,

4, ifi=n+1.

\

It can be easily verified that is injective.
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Then, the induced vertex labels are as follows:

221 +1, ifi=1,

2, if i =2,
2 — 1, if 3<i<[2],

fo(ui) = 2, if [2]+1<i<2[2]-3,
2 +1, if 2[2] —2<i<n-3,

A[2] —4, ifi=n—2

21, ifn—1<i<n.

(
Clearly it can be proved that the set of edge labels and thecawlwvertex labels is

{1,2,3,---,2n + 1}. Sincef is a Super Vertex Mean labeling;is a SVM graph.

Case 3:Whenn = 2(mod 3),n > 8

Definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

(

2i—1, if1<i<2,

2i, if 3<i<[%],

2041, if [3]4+1 <i<2[3] -2,
2i+2, if2[2]-1<i<n-3,

2i4+1, ifn—2<i<n,

4, ifi=n+1.

\

It can be easily verified that is injective.
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Then, the induced vertex labels are as follows:

2127 +1, ifi=1,

2, if i =2,
2 — 1, if 3<i<[2],

fo(ui) = 2, if [2]+1<i<2[2] -2
2 +1, if 2[2] —1<i<n-3,

A2 -2, ifi=n-2

21, ifn—1<i<n.

\
Clearly it can be proved that the set of edge labels and thecawlwvertex labels is

{1,2,3,---,2n + 1}. Sincef is a Super Vertex Mean labeling;is a SVM - graph. [

7.4.3 Cycle with a Chord connecting arc of distance

Theorem 7.4.3.Let C,, be a cycle of lengtm > 8 and letG be a graph obtained from
C,, by takingV (G) = V(C,,) and E(G) = E(C,) U {uv} such thatd., (u,v) = 4, where
u,v € V(C,). ThenG is a SVM - graph.

Proof. Let C,,,n > 8 be a cycleujus---u,u; and letu = u; andv = w,_3. Then
de, (u,v) = 4.
Let the edges off be such that

e = Uit 1 <i<n—1e, =uu; &e,r1 =uv = ugu, 3

Let G be a graph obtained frodi, by takingV’ (G) = V(C,) andE(G) = E(C,,) U {uv}.
ThenG hasn + 1 edges ana vertices, making a total dfn + 1 elements.

We prove the theorem in the following three cases.

Case 1:Whenn = 0(mod 3),n > 9

The SVM labeling of graph obtained fro@t, is shown in the following Figuré&.4.
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Figure 7.4: Super Vertex Mean Labeling@f U {uv}.

Whenn > 12 definef : E(G) — {1,2,3,--- ,2n + 1} as follows,
(
2 —1, if1<i<3,

24, if4<i<Z+1,
2i+1, if242 <i<in-2
2i+2, fin—1<i<n-—4,
2i+1, ifn—3<i<n,

6, ifi=n+1.

\
It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

p

21 3, ifi=1,

2i, if 2<i<3,

2i—1, f4<i<B+l,
folui) = 24, if24+2<i<2n-2
2i+1, if22-1<i<n-—4,
if i =n—3,

21, ifn—-—2<i<n.
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Clearly it can be proved that the set of edge labels and thecedlwertex labels is
{1,2,3,--- ,2n + 1}. Sincef is a Super Vertex Mean labeling,is a SVM graph.

Case 2:Whenn = 1(mod 3),n > 10

Definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

;

2i—1, if1<i<3,

24, if 4 <i<|[2]+1,
2i+1, if 2] +2 <i<2[2] -1,
2i+2, if2)2] <i<n-—4,

2i+1, ifn—3<i<n,

6, ifi=n+1.

\
It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

(2L§J+37 if i =1,
24, if 2 <i<3,
2i—1, if4<i<|2]+1,

SO (ui) = 4 2i, if (2] +2 <i<2[2] -1,
2i+1, if2[%] <i<n-—4,
41%], if i =n—3,
24, ifn—2<i<n.

\

Clearly it can be proved that the set of edge labels and thecetlvertex labels is
{1,2,3,--- ,2n + 1}. Sincef is a Super Vertex Mean labeling,is a SVM - graph.
Case 3:Whenn = 2(mod 3),n > 8
The SVM - labeling of graph obtained fro@ is shown in the following Figuré&.5.
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Figure 7.5: Super Vertex Mean Labeling@f U {uv}.

Forn > 11 definef : E(G) — {1,2,3,---,2n + 1} as follows,

(

L
21,
21+ 1,
f(ei) =
21 + 2,
21+ 1,

2

?
\

if =1,

if2<i<[%],

if[5]+1 <i<2[%] =3,
if2[2] -2 <i<n-—4,
ifn—3<i<n,

if i =n+1.

It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

\

Clearly it can be proved that the

if i =1,
if 2 <i <[],

if [2]+1 <i<2[2] -3,

set of edge labels and thecawlvertex labels is

{1,2,3,---,2n + 1}. Sincef is a Super Vertex Mean labeling;is a SVM - graph. [
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7.4.4 Cycle with a Chord connecting arc of distancé

Theorem 7.4.4.Let C,, be a cycle of lengtlh > 10 and letG be a graph obtained from
C,, by takingV(G) = V(C,,) and E(G) = E(C,,) U {uv} such thatdc, (u,v) = 5, where
u,v € V(C,). ThenG is a SVM - graph.

Proof. Let C,,,n > 10 be a cycleujus - --u,u; and letu = u; andv = w,_4. Then
de, (u,v) = 5.

Let G be a graph obtained frofi,, by takingV'(G) = V(C,) andE(G) = E(C,) U {uv}.
ThenG hasn + 1 edges ana vertices, making a total &fn + 1 elements.

Let the edges off be such that
e = Uiz, 1 <i<n—1e, =uyu; &epi1 = uv = Uy, 4

We prove the theorem in the following three cases.
Case 1:Whenn = 0(mod 3),n > 12
Definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

(

1, ifi=1,

2, if2<i<2,

2i4+1, if2+1 <i<2n-3,
2i+2, if2n—2 <i<n-5,

2i+1, ifn—4<i<n,

2, ifi=n-+1.

\

It can be easily verified that is injective.
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Then, the induced vertex labels are as follows:

)
2241, ifi=1,

2i—1, f2<i<y,

2i, if 2+1 <i<2n-3,
S (i) =
2i+1, if2n—2 <i<n-35,
A2 —4, ifi=n—4,

3

21, ifn—-—3<i<n.

0
Clearly it can be proved that the set of edge labels and thecedivertex labels is

{1,2,3,---,2n+ 1}. Sincef is a Super Vertex Mean labeling;is a SVM - graph.

Case 2:Whenn = 1(mod 3),n > 10

The SVM labeling of graph obtained fro@, is shown in the following Figuré&.6.

17
19

6

Figure 7.6: Super Vertex Mean Labeling®@f, U {uv}.

Forn > 13 definef : E(G) — {1,2,3,---,2n + 1} as follows,

;

2i—1, if1<i<2,

fle) =< 2, if 3<i<[2],

2041, if[3]1+1 <i<2[3] —
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/

2i+2, if2[2]-3 <i<n-5,
flei)=492i+1, ifn—4<i<n,

4, ifi=n+1.

\

It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

2[2] 41, ifi=1,

2, if i = 2,
2i—1, if3<i<[2],

fo(us) = § 24, if [2]+1 <i<2[2] -4,
2i+1, if2[2] -3 <i<n-35,

L
Clearly it can be proved that the set of edge labels and thecawlwertex labels is
{1,2,3,---,2n + 1}. Sincef is a Super Vertex Mean labeling;is a SVM - graph.
Case 3:Whenn = 2(mod 3),n > 11
The SVM - labeling of graph obtained fro@}; is shown in the following Figuré&.7.

Forn > 14 definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

(

2 —1, if1<i<4,

2i, if5<i<[2]+1,

20 +1, if[3]+2 <i<2[%] -3,
2i+2, if2[2] -2 <i<n-5,
2i+1, ifn—4<i<n,

8, ifi=n+1.

\

It can be easily verified that is injective.
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Figure 7.7: Super Vertex Mean Labeling®@f; U {uv}.

Then, the induced vertex labels are as follows:

(

2[1] 43, ifi=1,

2% -2,  if2<i<d4,

2i—1, if5<i<[2]+1,
fo(ui) = < 2i, if [2]+2 <i<2[2] -3,
2i+1, if2[2] -2 <i<n-5,

A[m) —4, ifi=n—4,

21, ifn—-—3<i<n.

Clearly it can be proved that the set of edge labels and thecawlvertex labels is

{1,2,3,---,2n + 1}. Sincef is a Super Vertex Mean labeling;is a SVM - graph. [

7.4.5 Cycle with a Chord connecting arc of distancé

Theorem 7.4.5.Let C,, be a cycle of lengtm > 12 and letG be a graph obtained from
C,, by takingV (G) = V(C,,) and E(G) = E(C,) U {uv} such thatd., (u,v) = 6, where
u,v € V(C,). ThenG is a SVM - graph.
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Proof. Let C,,,n > 12 be a cycleujus - - - u,u; and letu = u; andv = u,_5. Then
de, (u,v) = 6.

Let G be a graph obtained froi, by takingV' (G) = V(C,) andE(G) = E(C,,)U{uv}.
ThenG hasn + 1 edges ana vertices, making a total d¢fn + 1 elements.

Let the edges ofr be such that
e = Uit 1 <i<n—1e, =uu; &e,r1 = uv = U, s

We prove the theorem in the following three cases.
Case 1:Whenn = 0(mod 3),n > 12

The SVM labeling of graph obtained fro@, is shown in the following Figuré&.s.

21 19

25 14

Figure 7.8: Super Vertex Mean Labeling@f; U {uv}.

Forn > 15 definef : E(G) — {1,2,3,--- ,2n + 1} as follows,
(

2i—1, ifl1<i<3,

2, if 4 <i<Z+1,
2i4+1, if2+2 <i<2n-3,
flei) =

2042, if2n—2 <i<n-—6,

20+ 1, ifn—5<i<n,

6, ifi=n+1.
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It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

(

22 +3, ifi=1,

2 —2, if2<i<3,

2i—1, if4<i<Z4l,
fo(ui) = < 24, if 2+2<i<n-3,
2i+1, f2n—-2 <i<n-—6,

4% — 4

3 , ifi=n—5,

21, ifn—4<i<n.

Clearly it can be proved that the set of edge labels and thecetlvertex labels is
{1,2,3,---,2n+ 1}. Sincef is a Super Vertex Mean labeling;,is a SVM - graph.
Case 2:Whenn = 1(mod 3),n > 13
The SVM - labeling of graph obtained fro@} ;5 is shown in the following Figur&.9.

23 21

27 16

Figure 7.9: Super Vertex Mean Labeling@f; U {uv}.
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Forn > 16 definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

;

21— 1, if1<i<5,

21, if6<i<[3]+1,
2i4+1, if [2]+2 <i<2[2] -4,
2i+2, if2[2]-3 <i<n-—6,

2i+1, ifn—5<i<n,

10, if i =n -+ 1.

\

It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

(

2[2] +3, ifi=1,
2%—2,  if2<i<5,
2i—1, if6<i<[2]+1,

[P (i) = 4 2i, if [2]+2 <i<2[2] -4,
2i+1, if2[2] -3 <i<n-6,
A[2) -6, ifi=n—5,
21, ifn—4<i<n.

\
Clearly it can be proved that the set of edge labels and thecawlvertex labels is

{1,2,3,---,2n + 1}. Sincef is a Super Vertex Mean labeling;is a SVM graph.

Case 3:Whenn = 2(mod 3),n > 14
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Definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

20— 1, if1<i<3,

2i, if 4 <i<[%],

20+1, if[3]+1 <i<2[3] -4,
2i+2, if2[2] -3 <i<n-—6,

204+1, ifn—5<i<n,

4, ifi=n+1.

\

It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

(

2[2] 41, ifi=1,

2, if i = 2,
2i—1, if3<i<[2],

flu) =92i—1,  if[2]+1 <i<2[2] -4,
2i+1, if2[2] -3 <i<n-6,

A[2]—6, ifi=n—5,

21, ifn—4<i<n.

Clearly it can be proved that the set of edge labels and thecedivertex labels is
{1,2,3,---,2n+ 1}. Sincef is a Super Vertex Mean labeling,is a SVM - graph. [

7.4.6 Cycle with a Chord connecting arc of distanc&

Theorem 7.4.6.Let C), be a cycle of lengtlh > 14 and letG be a graph obtained from
C, by takingV(G) = V(C,,) and E(G) = E(C,,) U {uv} such thatdc, (u,v) = 7, where
u,v € V(C,). ThenG is a SVM - graph.

Proof. Let C,,,n > 14 be a cycleujus---u,u; and letu = u; andv = wu,_g. Then

de, (u,v) = 1.
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Let G be a graph obtained frofi, by takingV' (G) = V(C,,) andE(G) = E(C,,)U{uv}.
ThenG hasn + 1 edges ana vertices, making a total dfn + 1 elements.

Let the edges ofr be such that
e =uir1, 1 <i<n—1e, =u,u; & e,r1 = uv = Uy, _g

We prove the theorem in the following three cases.
Case 1:Whenn = 0(mod 3),n > 15
The SVM labeling of graph obtained fro@}; is shown in the following Figuré&.10.

25 23

19

Figure 7.10: Super Vertex Mean Labeling@f; U {uv}.

Forn > 18 definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

(

2i—1, if1<i<6,

24, if7<i<Z+2,
2i+1, if 243 <i<Zn-3,
2i42, if2n—-2 <i<n-T,
20 +1, ifn—6<i<n,

12, if i =n+ 1.
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It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

(

22 +5, ifi=1,

2i—2, if2<i<6,

2i—1, f7<i<2+2
fo(ui) = < 24, if 24+3<i<2n-3,
2i+1, f2n—-2<i<n-T7,

4% — 4

3 , ifi=n—6,

21, ifn—->5<i<n.

Clearly it can be proved that the set of edge labels and thecetlvertex labels is
{1,2,3,---,2n+ 1}. Sincef is a Super Vertex Mean labeling;,is a SVM - graph.
Case 2:Whenn = 1(mod 3),n > 16
Definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

(

2% —1, if1<i<3,

21, if 4 <i<[%],

2i+1, if [2]+1 <i<2[2] -5,
2i+2, if2[2]—4 <i<n-T,
204+1, ifn—6<i<n,

6, ifi=n+1.

\

It can be easily verified that is injective.
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Then, the induced vertex labels are as follows:

(

2[2] 41, ifi=1,

2i—2,  if2<i<3,
2i—1, if4<i<[2],

fo(ui) = < 2i, if [2]+1 <i<2[2] -5,
2i+1, if2[2] —4 <i<n-—7,

\
Clearly it can be proved that the set of edge labels and thecawlwvertex labels is

{1,2,3,---,2n + 1}. Sincef is a Super Vertex Mean labeling;is a SVM - graph.

Case 3:Whenn = 2(mod 3),n > 14

The SVM - labeling of graph obtained frot4,, is shown in the following Figur&.11.

25 23

29 16

Figure 7.11: Super Vertex Mean Labeling@f; U {uv}.
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Forn > 17 definef : E(G) — {1,2,3,--- ,2n + 1} as follows,

;

2% —1, if1<i<d4,

24, if 5<q<[2]+1,
20+ 1, if[2]+2 <i<2[2] -4,
2i+2, if2[2] -3 <i<n-—T1,

2i+1, ifn—6<i<n,

8, ifi=n+1.

\

It can be easily verified that is injective.

Then, the induced vertex labels are as follows:

(

2[2] +3, ifi=1,
2% -2, if2<i<4,
2i—1, if5<i<[2]+1,

[P (i) = 4 2i, if [2]+2 <i<2[2] -4,
2i+1, if2[2] -3 <i<n-T,
A[2] -6, ifi=n—86,
21, ifn—5<i<n.

Clearly it can be proved that the set of edge labels and thecawlvertex labels is

{1,2,3,---,2n + 1}. Sincef is a Super Vertex Mean labeling;is an SVM - graph. [
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Conclusion and Future Direction

In Chapter 1, we have given the basic concepts in graph thbatyate needed for the
subsequent chapters. Also, we have presented certain igitagling concepts that are used
through the thesis in the second part of this chapter.

In Chapter 2, we have introduced Super Vertex Mean Labelingh@ve proved that all
cycles except’; are SVM graphs. Then we have discussed SVM labeling behawtor
regard to types-labeling of all cycles. Also, we have proved that laddempgradmits SVM
labeling. Finally, we have discussed the SVM labeling beirasf all fan graphs.

In Chapter 3, we have proved that triangular snake, quagirlasnakes, pentagonal
snakes and hexagonal snakes are SVM graphs. Also we havedpiwtkC,, cyclic snake
with & blocks ofC,,, n > 7 andn = 3(mod 4), kC,, cyclic snake witht blocks ofC,,,n > 8
andn = 0(mod 4), kC,, cyclic snake withk blocks of C,,,n > 9 andn = 1(mod 4) and
kC,, cyclic snake witht blocks ofC;,, » > 10 andn = 2(mod 4) are SVM graphs.

In Chapter 4, we have proved that linear quadrilateral sndikesar pentagonal snakes,
linear hexagonal snakes, linear heptagonal snakes adnit @Weling. Then we have
discussed SVM labeling behavior €, cyclic snake withk, £ > 2 blocks ofC,,,n > 8
andn = 0(mod 2), C,,,n > 9 andn = 1(mod 4) andC,,,n > 11 andn = 3(mod 4).

In Chapter 5, we have proved that linear edge linked cycliks®& L(kC,), EL(kCs),
EL(kCs), EL(kC;), EL(kCs), EL(kCy), EL(kCy), EL(kCy,) are SVM graphs. Then
we have discussed SVM labeling behavior of linear edge tnkgclic snakes? L(kC,,),

n = 0(mod 12) andn > 12, n = 1(mod 12) andn > 13, n = 2 or 8(mod 12) andn > 14,
n = 3(mod 12) andn > 15, n = 4(mod 12) andn > 16, n = 5(mod 12) andn > 17,
n = 6(mod 12) andn > 18, n = 7(mod 12) andn > 19, n = 9(mod 12) andn > 21,
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n = 10(mod 12) andn > 22 andn = 11(mod 12) andn > 23.

In Chapter 6, we have proved that all th@egular graphs of ordex 7 and all graphs

having no isolated or pendant vertex and ordes, excludingC, are SVM-graphs.

In Chapter 7, we have proved that copies ofC, for m > 2, C,,, U C, for m,n > 3,

union of graphsP? for n > 3 are SVM-graphs. Also we have proved that cycles with a

chord connecting arc of distances 2, 3, 4, 5, 6, 7 admit SVMliag.

We now point out some directions for interested researdhene area of graph labeling:

1.

Explore SVM labeling behaviour of other families of graphat are not discussed

here.
Explore SVM labeling behaviour of trees.

It will be an interesting problem if one discusses the S\&ldeling behavior of non-

linear edge linked cyclic snakes.

. We can make an attempt to study SVM labeling behavior aftsy graph of cycle,

shadow graph of cycle, middle graph of cycle, total graphyofe:

. We can make an attempt to study SVM labeling behavior @rdttive triangular

snake, alternative quadrilateral snakes etc.,

. We can make an attempt to study SVM labeling behavior ofecydith a chord

connecting arc of distance 8.
Do ther-regular graphs of order 7 admit SVM labeling?
Does square of cycle admit SVM labeling?

Does & C- snake admit SVM labeling?
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