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Abstract

This thesis is presented as a result of the study done by the author under the guidance of

Dr.A.Lourdusamy for the award of the Degree of Doctor in Philosophy in Mathematics from

Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India.

Graph labeling has developed into one of the important areasin Graph Theory for last

fifty years. Though graph labeling is considered primarily atheoretical subject in graph

theory and discrete Mathematics, it serves as models for variety of applications. It is used in

many applications like coding theory, x-ray crystallography, radar, astronomy, circuit design,

communication network, transport problems, data base management etc. to list a few[15].

For each type of application, depending on the problem situation, a type of graph is used for

representing the situation. Then a suitable labeling method is applied on that graph and the

problem is solved with ease and comfort.

Graph labeling techniques derive its origin to a function namedβ− valuation by Rosa

[28] in 1967. He called a functionf aβ− valuation of a graphG with p vertices andq edges

if f is an injection from the vertices ofG to the set{1, 2, · · · , q} such that, when each edge

xy is assigned the label|f(x)− f(y)|, the resulting edge labels are distinct. He introduced

β− valuation as well as a number of other labelings as tools for decomposing the complete

graph into isomorphic subgraphs [7]. Several years later, Golomb [9] studied the same and

named it graceful labeling and this name is well known in Graph theory today.

A labeling of a graphG is an assignment of labels either to the vertices or edges. Ifthe

domain is the set of vertices, then the labeling is known as vertex labeling. A vertex labeling

of a graphG is an assignmentf of labels to the vertices ofG that induces a label for each

edgeuv depending on the vertex labels. Otherwise it is edge labeling. An edge labeling of
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a graphG is assignmentf of labels to the edges ofG that induces a label for each vertexv

depending on the edge labels. There are varieties of vertex as well as edge labeling that are

already in the literature [7].

After its origin from β− valuation, graph labeling methods grew far and wide.β−

valuation began as a means of attacking the conjecture of Ringel that K2n+1 can be

decomposed into2n+ 1 subgraphs that are all isomorphic to a given tree withn edges [29].

In 1980, Graham and Solane [10] introduced Harmonious labeling which came from their

study of modular versions of addittive base problems that arose from error-correcting codes.

They defined a graph withq edges to be harmonious if there is an injectionf from the

vertices ofG to the group of integers moduloq such that when each edgexy is assigned the

labelf(x) + f(y)(mod q), the resulting edge labels are distinct.

Later Acharya introduced Super graceful labeling. A(p, q)− graphG is said to be a

super graceful graph if there is a bijective functionf : V (G) → {1, 2, · · · , p + q} such

that f(uv) = |f(u)− f(v)| for every edgeuv ∈ E(G) Acharya and Germina [1] further

introduced an edge analogue of graceful labeling and named it as vertex graceful numbering.

Singh and Devraj [31] brought in the concept of triangular graceful graphs. They call a

graphG with p vertices andq edges triangular graceful if there is an injectionf from V (G)

to {1, · · · , Tq}, whereTq is theqth triangular number and the labels induced on each edge

uv by |f(u)− f(v)| are the firstq triangular numbers.

This way there came into existence many variations of Graceful as well as Harmonious

labelings. One significant example is Cordial Labeling introduced by Cahit [6]. For a graph

G if the funtion f is from V (G) to {0, 1} and for each edgexy the label|f(x)− f(y)| is

assigned, thenf is called Cordial labeling ofG, when the number of vertices labeled0 and

the number of vertices labeled1 differ at most by1 and the number of edges labeled0 and

the number of edges labeled1 differ at most by1. The other famous labeling methods are

Felicitous labeling, Magic labeling, Antimagic labeling,Mean labeling, Prime labeling etc.

The fast growth of this area of study is evident from the fact that more than 2000 papers on

graph labeling methods have come out over the past five decades [7].

The concept of Mean labeling was introduced by Somasundaramand Ponraj [32]. A
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graphG with p vertices andq edges is called a mean graph if there is an injective function

f from V (G) to the set{0, 1, 2, · · · , q} that induces for each edgeuv the label
⌈

f(u)+f(v)
2

⌉

such that the set of edge labels is{1, 2, · · · , q}. For example, Lourdusamy and Seenivasan

[17] have proved thatkCn snakes are mean graphs. Many others have also worked on this

notion of graph labeling.

Ramya, Ponraj and Jeyanthi [27] introduced a new variation ofmean labeling and

named it Super mean labeling. A super mean labelingf is an injection fromV to the set

{1, 2, · · · , p + q} that induces for each edgeuv the label
⌈

f(u)+f(v)
2

⌉

such that the set of all

vertex labels and the induced edge labels is{1, 2, · · · , p + q}. They have proved that many

graphs, like paths, combs, odd cycles,P 2
n etc. are super mean graphs. Jeyanthi, Ramya and

Thangavelu in [12] have proved that graphs likenK1,4 are super mean graphs. Again they

in [13] proved that the graph obtained by identifying endpoints of two or more copies ofP5;

the graph obtained fromCn by joining two vertices ofCn distance2 apart with a path of

length of two or three etc. are super mean graphs. In [14] Jeyanthi, Ramya and Thangavelu

give super mean labelings forCm ∪ Cn andk− super mean labelings for many graphs.

Balaji, Ramesh and Subramanian use in [2] and [3]Skolem mean labelingfor super mean

labeling. They too have proved a variety of graphs to be Skolem mean graphs. Nagarajan,

Vasuki and Arockiaraj [24] introduced the concept of Super Mean Number of a graph. They

were inspired by [33] Sundaram, Ponraj etc., who brought in the concept ofMean Number.

Let G be a graph and letf : V (G) → {1, 2, · · · , n} be a function such that the label of

the edgeuv is
⌈

f(u)+f(v)
2

⌉

andf(V (G)) ∪ f ∗(E(G)) ⊆ {1, 2, · · · , n}. If n is the smallest

positive integer satisfying these conditions together with the condition that all the vertex and

edge labels are distinct and there is no common vertex and edge labels, thenn is called the

super mean number of the graphG and is denoted bySm(G). They also have proved in [24]

that for any graphG of orderp, Sm(G) ≤ 2P −2 and have provided an upper bound of super

mean number of a few graphs. Some results on mean labeling andsuper mean labeling are

given in [12], [13], [14], [15], [17], [25], [30], [34] etc.

Gayathri and Tamilselvi in [7] brought the notion of(k, d)− super mean labeling defined

as follows; A(p, q)- graphG has a(k, d)− super mean labeling if there exists an injectionf
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from the vertices ofG to {k, k+ 1, · · · , k+ (p+ q)d} such that the induced mapf ∗ defined

on the edges ofG by f ∗(uv) =
⌈

f(u)+f(v)
2

⌉

has the property that the vertex labels and edge

labels together are the integers fromk to k + (p + q)d. Whend = 1, a (k, d)−super mean

labeling is called ak−super mean labeling. In [14] the authors enlist manyk−super mean

graphs.

Lourdusamy and Seenivasan [16] introduced vertex mean labeling as an edge analogue

of mean labeling as follows: A vertex mean labeling of a(p, q) - graphG(V,E) is defined

as an injectionf : E −→ {0, 1, · · · , q∗}, q∗ = max(p, q) such that the injectionf : V → N

defined by the rulef v(V ) = Round
(∑

e∈Ev
f(e)

d(v)

)

satisfies the property thatf v(V ) = {f v(u) :

u ∈ V } = {1, 2, ..., p}, whereEv denotes the set of edges inG that are incident atv andN

denotes the set of all natural numbers. A graph that has a vertex mean labeling is called a

vertex mean graph orV−mean graph. They have obtained necessary conditions for a graph

to be a vertex mean graph and have named a number of vertex meangraphs in [30].

Inspired and motivated by above developments in graph labeling we introduce another

variation of mean labeling, namedSuper Vertex Mean Labeling. This type of labeling is a

variation of both Super mean labeling and Vertex mean labeling. A Super Vertex Mean

labeling f of a (p, q) - graph G(V,E) is defined as an injection fromE to the set

{1, 2, 3, · · · , p + q} that induces for each vertexv the label defined by the rulef v(v) =

Round
(∑

e∈Ev
f(e)

d(v)

)

, whereEv denotes the set of edges inG that are incident at the vertex

v, such that the set of all edge labels and the induced vertex labels is{1, 2, 3, · · · , p+ q}. A

graph that admits such labeling is known as Super Vertex Meangraph (SVM). Super vertex

mean graphs can be viewed the dual of Super mean graphs, especially in the case of2−

regular graphs like cycles,Cn, (n ≥ 3). In this sense our study is an extension work of these

two concepts; Vertex mean labeling and Super mean labeling.Super vertex mean behaviour

of many standard graphs has been studied and recorded in thisthesis. Attempt is also made

to construct new types of Super Vertex Mean graphs and related concepts pertaining to

graph labeling techniques.

The thesis is presented in seven chapters. The first chapter gives a few preliminary

concepts in graph theory and in the field of graph labeling methods that are needed in the
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upcoming chapters. For the terminologies that are not explicitly mentioned here, a humble

request is made to refer Bondy and Murty [5], Gary Chartand [8] and West [35].

Chapter 2 introduces the subject matter of the thesis and defines the concept: Super

Vertex Mean labeling. As no tree is an Super Vertex Mean (SVM)graph we begin our

discussion with cyclesCn, (n ≥ 3) and fansFn, (n ≥ 2) and a variety of ways a cycle can be

labeled in such a fashion. We also define the concept calledSuper Vertex Mean Numberof

a graphG, inspired by the similar concepts namely, mean number and super mean number

that are already in the literature [33] and [24].

In Chapter 3, we study graphs that admit super vertex mean labeling. Here we present

and prove that cyclic snakes,kCn, (n ≥ 3) of a particular category are SVM graphs. Every

cyclic snake is represented by a unique string of integers. This typical category of snakes

contains strings in which each integer is 1.

Chapter 4 deals with linear cyclic snakes, of which all of themare SVM graphs. Linear

cyclic snake is a cyclic snake whose string contains integers each of which is equal to
⌊

n
2

⌋

,

wheren is the order of the individual constituent cycle in the cyclic snake.

In Chapter 5, our investigation continues on a third type of cyclic snake known as edge

linked cyclic snake(EL(kCn)). In his Ph.D. thesis, of 2013, Seenivasan [30] has defined

edge linked cyclic snake as an edge analogue ofkCn snakes. He has generalized edge

linked cyclic snake and analysed the conditions under whichthey are mean graphs. Here we

continue our quest by investigating these graphs in the realm of super vertex mean labeling.

Chapter 6 deals with SVM behaviour of all the graphs up to order5 and all the regular

graphs up to order 7. In doing so we have attempted to prove that disjoint union of SVM

graphs is SVM graph. The converse of the above fact is not trueasC4 is not a SVM graph

but its union with any cycle, including with itself (2C4), is a SVM graph.

Chapter 7 goes one step ahead of what has been proved in the previous chapter 6 and

brings in a new result that disjoint union of any type and number of cycles of any order is a

SVM graph. In this chapter a method of labeling such union of graphs is described. Attempts

are also made to proveP 2
n , (n ≥ 3) and graphs obtained fromCn, (n ≥ 4), by joining two

vertices ofCn, which are of certain distance apart, with a chord, are SVM graphs.
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Chapter 1

Preliminaries

In this chapter we list some basic concepts of our area of study, which are needed in the

subsequent chapters. Terms and terminologies connected with Graph theory and labeling are

discussed at length here. For concepts in graph theory, the reader can refer to [5].

1.1 Terms in Graph Theory

Definition 1.1.1. A graphG is a triple consisting of a finite non empty set, called the vertex

set ofG and is denoted byV (G), of objects called vertices (also called points or nodes),

a(possibly empty) set called the edge set denoted byE(G) of two element subsets ofV (G)

called edges(or lines), and an incidence function,ψG, that associates with each edge two

vertices (not necessarily distinct) called endpoints.

The number of vertices in a graphG is called its order, and the number of edges is its

size. In general, for a graphG we usep to denote its order andq for its size. A graph of

orderp and sizeq is called a(p, q)−graph.

If e is an edge andu andv are vertices of a graphG such thatψG(e) = uv, thene is

said to joinu andv, and the verticesu andv are called the ends ofe. When a vertexv is

an endpoint of some edgee, we say thate is incident with the vertexv and thatv is incident

with the edgee. Two verticesu andv of a graphG is said to be adjacent if there exists an
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edgee ∈ E(G) such thatψG(e) = uv. Two edges are said to be adjacent if they have a

common end vertex.

If e is an edge from a vertexv to itself, then it is called a loop on the vertexv. The

incidence functionψG need not be one-one. Therefore, it is possible theψG(e1) = ψG(e2).

Thene1 ande2 are called parallel edges. A vertexv of graphG is called an isolated vertex

if it is not incident with any edge inG. A graph is called simple if it has no loops and no

parallel edges. It is possible that a graphG can have directed edges or arcs. Such a graph is

known as directed graph or Digraph. The graphs considered here will be finite, undirected

and simple.

Definition 1.1.2. The degree of a vertexv ofG is the number of edges incident on it and is

denoted byd(v). A vertex with degree zero is called an isolated vertex; a vertex with degree

one is a pendant vertex or a leaf. The unique edge that is incident with a pendant vertex is a

pendant edge. A vertex with odd degree is an odd vertex and thatwith an even degree is an

even vertex.

Throughout this thesis the letterG denotes a graph. Moreover, when there is no scope

of ambiguity, the letterG is omitted from graph-theoretic symbols and write, for exampleV

andE instead ofV (G) andE(G) respectively.

Definition 1.1.3. A walk in a graph is finite non empty sequence whose terms are

alternatively vertices and edges. If the edges of a walk are distinct, then the walk is called a

trail and in addition, if the vertices are distinct then the walk is known as a path. A path

with n vertices is denoted byPn. A walk, trail or path is called trivial if it has only one

vertex and no edges.

Definition 1.1.4. If in a u− v walku = v then we say that the walk is closed. A non-trivial

closed trail is called a circuit. A non-trivial closed trailin a graphG is called a cycle if its

origin and internal vertices are distinct. In detail, the closed trailC = v1v2 · · · vnv1 is a

cycle ifC has at least one edge andv1, v2, · · · , vn are distinct vertices. A cycle withn edges

is ann−cycle. Ann−cycle is called odd or even depending on whethern is odd or even
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respectively. Ann−cycle is commonly denoted byCn. Every cycle is a circuit, but a circuit

need not be a cycle.

Definition 1.1.5. Let u and v be two vertices of a graphG. The vertexu is said to be

connected to the vertexv if there exists au − v walk inG. The graph itself is said to be

connected if for every two pairu, v of vertices ofG there is au − v walk inG. Otherwise

graphG is said to be disconnected.

Definition 1.1.6. For a non-trivial graphG and a pairu, v of vertices ofG, the distance

betweenu and v is the length of the shortestu − v path inG, if it exists. It is denoted by

dG(u, v). If G has no suchu− v path, then we definedG(u, v) = ∞.

Definition 1.1.7. A graph that is connected and has no cycles is known as a tree. Every

non-trivial tree has at least two pendant vertices.

Definition 1.1.8. A graphG1 = (V1, E1) is said to be isomorphic toG2 = (V2, E2) if

there is a one-to-one correspondence between the vertex setsV1 andV2 and a one-to-one

correspondence between the edge setsE1 andE2 in such a way that ife1 is an edge with

end verticesu1 andv1 in G1 then corresponding edgee2 in G2 has its end verticesu2 andv2

in G2 which correspond tou1 andv1 respectively. Such a pair of correspondence is called

graph isomorphism.

Definition 1.1.9. A complete graph of ordern, denoted byKn is a simple graph in which

each pair of distinct vertices is joined by an edge. Thus, a graph withn vertices is complete

if it has as many as possible edges, provided there are no loops and no multiple edges.

Definition 1.1.10. Two graphsG1 and G2 are said to disjoint if they have no vertex in

common, and they are edge disjoint if they have no edge in common.

Definition 1.1.11.LetG1 andG2 be two graphs, the unionG1∪G2 is a graphG with vertex

set consisting of all those vertices which are either inG1 or G2 (or both) and with edge set

consisting of all those edges which are either inG1 or G2 (or both). The disjoint union ofm

copies of a graphG is denoted bymG.
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Definition 1.1.12. LetG = (VG, EG) andH = (VH , EH) be two graphs. The direct product

of G andH, G × H, whose vertex set is the Cartesian productV (G × H) = VG × VH =

{(x, y) : x ∈ VG, y ∈ VH} and whose edges are given byEG×H = {(x, y), (x′, y′) : x = x′

and(y, y′) ∈ EH or (x, x′) ∈ EG andy = y′}. The productPm × Pn is called a planar grid

andP2 × Pn is known as a ladder. The productCm × Pn is called a prism.

Definition 1.1.13. The Square of graphG denoted byG2 has the same vertex set as that of

G and the two vertices are inG2 if they are at a distance of1 or 2 in G.

Definition 1.1.14. If for some positive interr, d(v) = r for every vertexv of the graphG,

thenG is calledr−regular. A3-regular graph is also called a cubic graph. The complete

graphKn is (n − 1)- regular graph. The complete bipartite graphKn,n on 2n vertices is

n-regular.

1.2 Labeling and Number Theoretic Terms

Definition 1.2.1. For non-empty setsA andB, a functionf fromA toB, written asf : A→

B, is a relation fromA to B in which each element ofA appears as the first coordinate in

exactly one ordered pair. If the ordered pair(a, b) ∈ f , then we writeb = f(a) andb is the

image ofa. The set of all images off is called the range off .

Definition 1.2.2. A functionf : A → B, is injective (or one-to-one) if distinct elements of

A have distinct elements inB. Therefore,f is injective if for every two(distinct) elementsa1

anda2 in A, it follows thatf(a1) 6= f(a2).

Definition 1.2.3. A functionf : A → B, is surjective (or onto) if every element ofB is the

image of some element ofA, i.e., if the range off isB.

Definition 1.2.4. A function that is both injective and surjective is called a bijective function

or a one-to-one correspondence.

Definition 1.2.5. A labeling of a graphG is a map that carries graph elements to integers.

Or in other words, a labeling of a graphG is a function either from the set of vertices or the
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set of edges to a set of integers such that there is an induced function from the set of edges or

the set of vertices respectively depending on the former function. If the domain is the set of

vertices, then the labeling is known as vertex labeling, and if the domain is the set of edges,

then the labeling is known as edge labeling.

Definition 1.2.6. Round of a number or rounding function of a numerical value means

replacing it by another value that is approximately equal but has a shorter, simpler or more

explicit representation. The round function is also calledthe nearest integer function and is

defined such that Round(x) is the integer closest tox.

Definition 1.2.7. The floor and ceiling functions map a real number to the greatest

proceeding or the least succeeding integer, respectively.More precisely,floor(x) = bxc is

the greatest integer less than or equal tox andceiling(x) = dxe is the least integer greater

than or equal tox.
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Chapter 2

Super Vertex Mean Labeling

This chapter begins with the definition ofSuper Vertex Mean Labeling, which is basically

an edge labeling of graphs. It can also be seen as a dual of Super Mean Labeling introduced

by Ramya et.al in [27]. Therefore Super Mean Labeling is a variation of both Super mean

labeling and the one introduced by Lourdusamy et.al in [16],viz., Vertex mean labeling. In

this chapter we examine Cycles,Cn, n ≥ 3 and Fans,Fn, n ≥ 2.

Definition 2.0.8. A Super Vertex Mean labelingf of a (p, q) - graphG(V,E) is defined as

an injection fromE to the set{1, 2, 3, · · · , p + q} that induces for each vertexv the label

defined by the rulef v(v) = Round
(∑

e∈Ev
f(e)

d(v)

)

, whereEv denotes the set of edges inG that

are incident at the vertexv, such that the set of all edge labels and the induced vertex labels

is {1, 2, 3, · · · , p+ q}.

A graph that admits super vertex mean labeling is called a Super Vertex Mean, that is,

SVM) graph in short.

2.1 A Preliminary Observation

A graph having isolated vertices or leaves cannot be an SVM - graph. For, ifdeg(v) = 0

for any vertexv of G, the above definition is not defined and ifdeg(v) = 1 for any vertexv

of G, the induced vertex label remains the same as the label of theedge that is incident on
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the vertexv. Therefore, necessarilydeg(v) ≥ 2 for all verticesv of G. It is obvious that no

tree is an SVM - graph.

2.2 Super Vertex Mean Labeling of Cycles

Theorem 2.2.1.All the cycles exceptC4 are SVM - graphs.

Proof. It is clear from the following illustration thatC4 is not SVM - graph.

Illustration: ForC4, p = 4 andq = 4.

f(E) ∪ f(V ) = {1, 2, 3, · · · , p+ q} = {1, 2, 3, 4, 5, 6, 7, 8} .

It is obvious that1 and8 cannot be induced vertex labels, so necessarily belong tof(E).

Since2 cannot be an edge label, it belongs tof(V ) and for2 to be a vertex label, it has to

labeled on a vertex on which the edges that are labeled1 and3 lie. And so,3 also belongs to

f(E).

Therefore,8 can be labeled on an edge that is adjacent to an edge labeled3 or 1. The

following cases emerge:

Case 1:Let 8 be labeled on an edge adjacent to the edge labeled3.

Now, 7 cannot be labeled on any edges. The remaining options are that, we label either

4 or 5 on the fourth edge.

Case 1.a.:Let 4 be labeled on the fourth edge. This is not an SVM - labeling as the vertices

that are incident on the edge labeled8 get the same induced label6.

Case 1.b.:Let 5 be labeled on the fourth edge. This also is ruled out as one of the vertices

incident on the edge labeled5 gets the label3, which is contrary to the assumption that3 has

to be an edge label.

Thereforecase 1is not possible.

Case 2:Let 8 be labeled on an edge which is adjacent to the edge labeled1.

In this case7 cannot be an edge label and if7 were to become an induced vertex label,

then one of the induced vertex labels gets repeated. Therefore thiscase 2also is impossible.

The above investigation reveals that the cycleC4 is not an SVM - graph. So, let us assume

thatn 6= 4.
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Now let us prove thatCn, exceptC4 is an SVM - graph. There can be two cases

depending upon whethern is odd or even.

Case 3:n ≡ 1(mod 2).

Let Cn be an odd cycle withn vertices. Let{e1, e2, · · · , en} be the edge set and

{v1, v2, · · · , vn} be the vertex set ofCn, such thatei = vivi+1, 1 ≤ i ≤ n − 1 and

en = vnv1.

Let n = 2r + 1. The edges ofCn are labeled as follows:

f(ei) =











2i− 1 if 1 ≤ i ≤ r + 1

2i if r + 2 ≤ i ≤ n

It is easy to observe thatf is injective. The induced vertex labels are given as follows:

f v(vi) =



























n+ 1 if i = 1

2i− 2 if 2 ≤ i ≤ r + 1

2i− 1 if r + 2 ≤ i ≤ n

It is clear that,

f(E) ∪ f v(V ) = {1, 3, 5, · · · , 2r + 1, 2r + 4, 2r + 6, · · · , 2n− 2, 2n} ∪

{2r + 2 = n+ 1, 2, 4, · · · , 2r − 2, 2r, 2r + 3, 2r + 5, · · · , 2n− 3, 2n− 1}

= {1, 3, · · · , 2r + 1 = n, 2r + 3, 2r + 5, ..., 2n− 1} ∪

{2, 4, · · · , 2r = n− 1, n+ 1 = 2r + 2, 2r + 4, 2r + 6, · · · , 2n− 1, 2n}

= {2i− 1 : 1 ≤ i ≤ n} ∪ {2i : 1 ≤ i ≤ n}

= {1, 2, 3, · · · , 2n}

Case 4:n ≡ 0(mod 2)

Let Cn be an even cycle withn vertices. Let{e1, e2, · · · , en} be the edge set and

{v1, v2, · · · , vn} be the vertex set ofCn such thatei = vivi+1, 1 ≤ i ≤ n− 1 anden = vnv1.
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Let n = 2r. The edges ofCn are labeled as follows:

f(ei) =







































































1 if i = 1

3 if i = 2

7 if i = 3

4i− 4 if 4 ≤ i ≤ r + 1

4n− 4i+ 5 if r + 2 ≤ i ≤ n− 1

6 if i = n

It is easy to observe thatf is injective. The induced vertex labels are given as follows:

f v(vi) =







































































4 if i = 1

2 if i = 2

5 if i = 3

4i− 6 if 4 ≤ i ≤ r + 1

4n− 4i+ 7 if r + 2 ≤ i ≤ n− 1

8 if i = n

It is clear that,

f(E) ∪ f v(V ) = {1, 3, 7, 12, 16, · · · , 4r, 4r − 3, 4r − 7, · · · , 13, 9, 6} ∪

{4, 2, 5, 10, 14, · · · , 4r − 6, 4r − 2, 4r − 1, 4r − 5, · · · , 15, 11, 8}

= {1, 3, 6, 7, 12, 16, 20, · · · , 4r, 9, 13, · · · , 4r − 7, 4r − 3} ∪

{2, 4, 5, 8, 10, 14, 18, · · · , 4r − 6, 4r − 2, 11, 15, 19, · · · , 4r − 5, 4r − 1}

= {1, 2, 3, 4, 5, 6, 7, 8} ∪ {9, 13, 4r − 3} ∪ {10, 14, · · · , 4r − 2} ∪

{11, 15, · · · , 4r − 1} ∪ {12, 16, · · · , 4r}

= {1, 2, 3, · · · , 4r − 3, 4r − 2, 4r − 1, 4r = 2n}

= {1, 2, 3, · · · , 2n}

Hence we have proved that all CyclesCn, exceptC4 are Super Vertex Mean graphs.

Example 2.2.2.Super vertex-mean labeling ofC9 andC10 is shown in Figure2.1.
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Figure 2.1: Super vertex mean labelings ofC9 andC10.

2.3 Types of SVM - labeling of Cycles

Any cycleCn, n ≥ 3 andn 6= 4 can be SVM - labeled in a variety of ways. Therefore,

the need arises to categorize various types of these labelings.

Example 2.3.1.Figure 2.2 shows thatC7 can be labeled altogether as many as3 different

ways.
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Figure 2.2:C7 can be labeled altogether as many as3 different ways.
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Definition 2.3.2. s – type labeling of Cycles, Cm,m ≥ 3 andm 6= 4: We denote a super

vertex mean labelingf : E → {1, 2, · · · , 2m} of a cycleCm,m ≥ 3 andm 6= 4, that places

1 and 2m on two edges such that the number of internal vertices along the shortest path

connecting these two edges iss, ass-type labeling, where1 ≤ s ≤
⌊

m
2

⌋

.

2.4 Types – labeling of all cycles

In order to define completely the various types of SVM - labeling of Cn, n ≥ 3 and

n 6= 4, we have to consider the following two cases, based on whether n is odd or even.

Case 1:n ≡ 1(mod 2)

Let n = 2r+1. LetCn be an odd cycle withn vertices. Let{e1, e2, · · · , en} be the edge

set and{v1, v2, · · · , vn} be the vertex set ofCn such thatei = vivi+1, 1 ≤ i ≤ n − 1 and

en = vnv1. The type 1 - labeling of cycleCn, n ≥ 3 is given as follows;

f1(ei) =











2i− 1 if 1 ≤ i ≤ r + 1

2i if r + 2 ≤ i ≤ n

or, when we reverse the order of naming the edges and vertices, we get equivalently

f1(ei) =



























1 if i = 1

4r − 2i+ 6 if 2 ≤ i ≤ r + 1

4r − 2i+ 5 if r + 2 ≤ i ≤ n.

Type 2 - labeling, then is defined as follows forCn, n ≥ 5;

f2(ei) =























































1 if i = 1

4i− 2 if i = 2

4r + 4− 2i+ 4 if 3 ≤ i ≤ r + 1

4r + 4− 2i+ 3 if r + 2 ≤ i ≤ 2r

8r − 4i+ 7 if i = n

11



Similarly type 3 - labeling ofCn, n ≥ 7 can be defined as,

f3(ei) =























































1 if i = 1

4i− 2 if 2 ≤ i ≤ 3

4r + 6− 2i+ 4 if 4 ≤ i ≤ r + 1

4r + 6− 2i+ 3 if r + 2 ≤ i ≤ 2r − 1

8r − 4i+ 7 if 2r ≤ i ≤ n.

And whenr = s, typer - labeling ofCn, n ≥ 3 is defined as,

fr(ei) =



























1 if i = 1

4i− 2 if 2 ≤ i ≤ r + 1

8r − 4i+ 7 if r + 2 ≤ i ≤ n.

or, equivalently

fr(ei) =























































1 if i = 1

4i− 2 if 2 ≤ i ≤ r = s

4r + 2r − 2i+ 4 if i = r + 1 = s+ 1

4r + 2r − 2i+ 3 if i = r + 2 = s+ 2

8r − 4i+ 7 if r + 3 ≤ i ≤ n.

Therefore, when we consider all odd cycles and all the types of their SVM - labeling in

general, we have the following theorem.

Theorem 2.4.1.Letn = 2r+1. LetCn be an odd cycle withn vertices. Let{e1, e2, · · · , en}

be the edge set and{v1, v2, · · · , vn} be the vertex set ofCn such thatei = vivi+1, 1 ≤ i ≤ n−

1 anden = vnv1. Then type s -(1 ≤ s ≤ r) SVM - labeling of cycleCn, n ≡ 1(mod 2), n ≥ 3

12



is given as follows:

fs(ei) =























































1 if i = 1

4i− 2 if 2 ≤ i ≤ s

4r + 2s− 2i+ 4 if s+ 1 ≤ i ≤ r + 1

4r + 2s− 2i+ 3 if r + 2 ≤ i ≤ 2r − s+ 2

8r − 4i+ 7 if 2r − s+ 3 ≤ i ≤ n.

Proof. Let n ≡ 1(mod 2), andn = 2r + 1. Let {e1, e2, · · · , en} be the edge set and

{v1, v2, · · · , vn} be the vertex set ofCn such thatei = vivi+1, 1 ≤ i ≤ n− 1 anden = vnv1.

The edges ofCn can types - labeled,1 ≤ s ≤ r, as given in the theorem. Clearlyfs is an

injective function with range{1, 2, · · · , 2n}.

The induced vertex labeling is given as follows:

Whens = 1,

f v
1 (vi) =







































2 if i = 1

n+ 1 if i = 2

4r − 2i+ 7 if 3 ≤ i ≤ r + 2

4r − 2i+ 6 if r + 3 ≤ i ≤ n.

It is evident that,

f1(E) ∪ f
v
1 (V ) = {1, 2n, 2n− 2, 2n− 5, · · · , n+ 5, n+ 3, n, n− 2, n− 4, · · · , 5, 3} ∪

{2, n+ 1, 2n− 1, 2n− 3, · · · , n+ 4, n+ 2, n− 1, n− 3, · · · , 6, 4}

= {1, 3, · · · , n, n+ 3, n+ 5, · · · , 2n} ∪

{2, 4, · · · , n− 1, n+ 1, n+ 2, n+ 4, · · · , 2n− 1}

= {1, 2, 3, · · · , 2n}.
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Whens = r,

f v
r (vi) =







































2 if i = 1

4i− 4 if 2 ≤ i ≤ r + 1

4r + 1 = 2n− 1 if i = r + 2

8r − 4i+ 9 if r + 3 ≤ i ≤ n.

It is clear that,

fr(E) ∪ f
v
r (V ) = {1, 6, 10, · · · , 2n, 2n− 3, 2n− 7, · · · , 3} ∪

{2, 4, 8, · · · , 2n− 2, 2n− 1, 2n− 5, · · · , 9, 5}

= {1, 3, 7, · · · , 2n− 3, 6, 10, · · · , 2n} ∪

{2, 4, 8, · · · , 2n− 2, 2n− 1, 5, 9, · · · , 2n− 5}

= {1, 2, 3, 4, 5, · · · , 2n− 3, 2n− 2, 2n− 1, 2n}.

Therefore in the more general case, the induced vertex labels are given as follows:

f v
s (vi) =







































































2 if i = 1

4i− 4 if 2 ≤ i ≤ s

2r + 2s if i = s+ 1

4r + 2s− 2i+ 5 if s+ 2 ≤ i ≤ r + 2

4r + 2s− 2i+ 4 if r + 3 ≤ i ≤ 2r − s+ 2

8r − 4i+ 9 if 2r − s+ 3 ≤ i ≤ n.

Clearly it is injective and

fs(E) ∪ f
v
s (V ) = {1, 2, 3, 4, 5, · · · , 2n− 3, 2n− 2, 2n− 1, 2n}.

Since,

fs(E) = {1, 6, 10, · · · , 4s− 2, 2n, 2n− 2, · · · , 2r + 2s+ 2, 2r + 2s− 1,

2r + 2s− 3, · · · , 4s+ 1, 4s− 1, 4s− 5, · · · , 7, 3}

= {1, 3, 6, 7, 10, 11, 14, 15, · · · , 4s− 5, 4s− 2, 4s− 1, 4s+ 1, · · · ,

2r + 2s− 3, 2r + 2s− 1, 2r + 2s+ 2, · · · , 2n− 2, 2n}
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And,

f v
s (V ) = {2, 4, 8, · · · , 4s− 4, 2r + 2s, 2n− 1, 2n− 3, · · · , 2r + 2s+ 3, 2r + 2s+ 1,

2r + 2s− 2, 2r + 2s− 4, · · · , 4s+ 2, 4s, 4s− 3, 4s− 7, · · · , 9, 5}

= {2, 4, 5, 8, 9, · · · , 4s− 4, 4s− 3, 2r + 2s, 4s, 4s+ 2, · · · , 2r + 2s− 2,

2r + 2s+ 1, 2r + 2s+ 3, · · · , 2n− 3, 2n− 1}

= {2, 4, 5, 8, 9, 12, 13, · · · , 4s− 4, 4s− 3, 4s, 4s+ 2, · · · , 2r + 2s− 2,

2r + 2s, 2r + 2s+ 1, 2r + 2s+ 3, · · · , 2n− 3, 2n− 1}

Therefore,

fs(E) ∪ f
v
s (V ) = {1, 2, 3, 4, 5, · · · , 2n− 3, 2n− 2, 2n− 1, 2n}.

Hence we have proved that all odd cyclesCn, can be s–type labeled, where1 ≤ s ≤ r and

n = 2r + 1.

Case 2:n ≡ 0(mod 2) LetCn be an even cycle andn = 2r where,n ≥ 6. (SinceC4 is

not an SVM graph).

Let {e1, e2, · · · , en} be the edge set and{v1, v2, · · · , vn} be the vertex set ofCn such that

ei = vivi+1, 1 ≤ i ≤ n− 1 anden = vnv1.

Checking various possibilities we realize that type 1 - labeling is not possible for even

cycles. So we assume that2 ≤ s ≤ r.

Type 2 - labeling ofCn, n ≥ 6 is given as follows:

f2(ei) =







































































1 if i = 1

7 if i = 2

4r − 2i+ 6 if 3 ≤ i ≤ r

4r − 2i+ 5 if r + 1 ≤ i ≤ 2r − 2

6 if i = 2r − 1

3 if i = 2r.
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Similarly, type 3 - labeling ofCn, n ≥ 8 are as follows;

f3(ei) =



































































































1 if i = 1

7 if i = 2

12 if i = 3

4r − 2i+ 8 if 4 ≤ i ≤ r

4r − 2i+ 7 if r + 1 ≤ i ≤ 2r − 3

9 if i = 2r − 2

6 if i = 2r − 1

3 if i = 2r

And type 4 - labeling ofCn, n ≥ 10 is given below;

f4(ei) =



































































































1 if i = 1

7 if i = 2

4i if 3 ≤ i ≤ 4

4r − 2i+ 10 if 5 ≤ i ≤ r

4r − 2i+ 9 if r + 1 ≤ i ≤ 2r − 4

8r − 4i+ 1 if 2r − 3 ≤ i ≤ 2r − 2

6 if i = 2r − 1

3 if i = 2r

and, whens = r, typer - labeling is given by,

fr(ei) =







































1 if i = 1

4i− 2 if 2 ≤ i ≤ r − 1

r + 3i− 3 if r ≤ i ≤ r + 1

8r − 4i+ 3 if r + 2 ≤ i ≤ n.
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And in general as in the previous case, for all even cycles, types - labeling is defined in

the following theorem:

Theorem 2.4.2.Letn = 2r. LetCn be an even cycle withn vertices. Let{e1, e2, · · · , en}

be the edge set ofCn such thatei = vivi+1, 1 ≤ i ≤ n − 1 and en = vnv1. Types -

(2 ≤ s ≤ r − 1) SVM - labeling ofCn, n ≡ 0(mod 2), n ≥ 6, is given as follows:

fs(ei) =



















































































1 if i = 1

7 if i = 2

4i if 3 ≤ i ≤ s

4r − 2i+ 2s+ 2 if s+ 1 ≤ i ≤ r

4r − 2i+ 2s+ 1 if r + 1 ≤ i ≤ 2r − s

8r − 4i+ 1 if 2r − s+ 1 ≤ i ≤ 2r − 2

6r − 3i+ 3 if 2r − 1 ≤ i ≤ n

and, whens = r, typer - labeling is given by,

fr(ei) =







































1 if i = 1

4i− 2 if 2 ≤ i ≤ r − 1

r + 3i− 3 if r ≤ i ≤ r + 1

8r − 4i+ 3 if r + 2 ≤ i ≤ n.

Proof. Let n ≡ 0(mod 2), and n = 2r. Let {e1, e2, · · · , en} be the edge set and

{v1, v2, · · · , vn} be the vertex set ofCn such thatei = vivi+1, 1 ≤ i ≤ n− 1 anden = vnv1.

Case 1: When2 ≤ s ≤ r − 1, the edges ofCn, n ≥ 6 can be types - labeled as given

17



below:

fs(ei) =



















































































1 if i = 1

7 if i = 2

4i if 3 ≤ i ≤ s

4r − 2i+ 2s+ 2 if s+ 1 ≤ i ≤ r

4r − 2i+ 2s+ 1 if r + 1 ≤ i ≤ 2r − s

8r − 4i+ 1 if 2r − s+ 1 ≤ i ≤ 2r − 2

6r − 3i+ 3 if 2r − 1 ≤ i ≤ n

Clearlyfs is an injective function with range{1, 2, ..., 2n}. The induced vertex labeling

is given as follows:

Whens = 2

f v
s (vi) =























































2i if 1 ≤ i ≤ 2

2r + 4 if i = 3

4r − 2i+ 2s+ 3 if 4 ≤ i ≤ r + 1

4r − 2i+ 2s+ 2 if r + 2 ≤ i ≤ 2r − 2

6r − 3i+ 5 if 2r − 1 ≤ i ≤ n

And whens ≥ 3, we have

f v
s (vi) =























































2i if 1 ≤ i ≤ 2

2i+ 4 if i = 3

4i− 2 if 4 ≤ i ≤ s

2r + 2s if i = s+ 1

4r − 2i+ 2s+ 3 if s+ 2 ≤ i ≤ r + 1
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f v
s (vi) =







































4r − 2i+ 2s+ 2 if r + 2 ≤ i ≤ 2r − s

4s− 1 if i = 2r − s+ 1

8r − 4i+ 3 if 2r − s+ 2 ≤ i ≤ 2r − 2

6r − 3i+ 5 if 2r − 1 ≤ i ≤ n

Clearly it is an injective function and, it is also evident that, whens = 2,

f2(E) ∪ f
v
2 (V ) = {1, 7, 4r, 4r − 2, · · · , 2r + 6, 2r + 3, 2r + 1, · · · , 9, 6, 3} ∪

{2, 4, 2r + 4, 4r − 5, 4r − 3, · · · , 2r + 5, 2r + 2, · · · , 10, 8, 5}

= {1, 2, 3, 4, 5, 6, 7, 8, 9, · · · , 4r − 3, 4r − 2, 4r − 1, 4r}.

And for 3 ≤ s ≤ r − 1,

fs(E) ∪ f
v
s (V ) = {1, 7, 12, · · · , 4s, 4r, 4r − 2, · · · , 2r + 2s+ 2, 2r + 2s− 1,

2r + 2s− 3, · · · , 4s+ 3, 4s+ 1, 4s− 3, 4s− 7, · · · , 9, 6, 3} ∪

{2, 4, 10, 14, 18, · · · , 4s− 2, 2r + 2s, 4r − 1, 4r − 3, · · · , 2r + 2s+ 1,

2r + 2s− 2, 2r + 2s− 4, · · · , 4s+ 2, 4s− 1, 4s− 5, 4s− 9, · · · , 11, 8, 5}

= {1, 3, 6, 7, 9, 13, · · · , 4s− 7, 4s− 3, 12, 16, · · · , 4s, 4r, 4r − 2, · · · ,

2r + 2s+ 2, 2r + 2s− 1, 2r + 2s− 3, · · · , 4s+ 3, 4s+ 1} ∪

{2, 4, 5, 8, 10, 14, · · · , 4s− 2, 11, 15, · · · , 4s− 9, 4s− 5, 4s− 1, 4s+ 2,

4s, · · · , 2r + 2s− 4, 2r + 2s, 4r − 1, 4r − 3, · · · , 2r + 2s+ 1}

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, · · · , 4r − 2, 4r − 1, 4r}.

Case 2:Whens = r, the edges ofCn, n ≥ 6 can be typer - labeled as given below:

fr(ei) =







































1 if i = 1

4i− 2 if 2 ≤ i ≤ r − 1

r + 3i− 3 if r ≤ i ≤ r + 1

8r − 4i+ 3 if r + 2 ≤ i ≤ n.

Clearly, fr is an injective function with range{1, 2, 3, · · · , 2n}. The induced vertex
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labeling is given as follows:

f v
r (vi) =























































2i if 1 ≤ i ≤ 2

4i− 4 if 3 ≤ i ≤ r

4r − 1 if i = r + 1

4r − 2 if i = r + 2

8r − 4i+ 5 if r + 3 ≤ i ≤ n.

It is clear now that,

fr(E) ∪ f
v
r (V ) = {1, 2, 3, · · · , 2n− 2, 2n− 1, 2n}.

Since,

fr(E) = {1, 6, 10, · · · , 4r − 6, 4r − 3, 4r, 4r − 5, 4r − 9, 4r − 13, · · · , 7, 3}.

f v
r (V ) = {2, 4, 8, 12, · · · , 4r − 4, 4r − 1, 4r − 2, 4r − 7, 4r − 11, · · · , 9, 5}.

Hence we have proved that all even cyclesCn, can bes-type, (1 ≤ s ≤ r, n ≥ 6 and

n = 2r), SVM labeled.

Theorem 2.4.3.The ladderLn = Pn × P2, wheren ≥ 3 is SVM.

Proof. Let V (Pn×P2) = {u1, u2, · · · , un} ∪ {v1, v2, · · · , vn} andE(Pn×P2) = {uiui+1 :

1 ≤ i ≤ n− 1} ∪ {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi : 1 ≤ i ≤ n}. We note that the order of

Ln is 2n and the size is3n− 2.

The edges ofLn are labeled as follows:

f(uiui+1) =



























3 if i = 1

5i− 1 if i is even ori = n− 1

5i if i is odd andi 6= 1 andi 6= n− 1.

f(vivi+1) =











5n− 2 if i = n− 1

5i+ 2 if i 6= n− 1.
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f(uivi) =























































1 if i = 1

5 if i = 2

5i− 6 if i is even andi 6= 2 or n

5i− 5 if i is odd andi 6= 1 or n

5n− 4 if i = n.

It can easily be observed thatf is injective. The induced vertex labels are as follows;

f v(ui) =



























2 if i = 1

5i− 4 if 2 ≤ i ≤ n− 1

5n− 5 if i = n.

f v(vi) =



























4 if i = 1

5i− 2 if 2 ≤ i ≤ n− 1

5n− 3 if i = n.

It is clear thatf(E) ∪ f v(V ) = {1, 2, · · · , 5n− 2}.

Since,

f(E) = {3, 9, 19, · · · , 5n− 6(if n is odd), 5n− 11(if n is even)} ∪

{15, 25, · · · , 5n− 10(if n is odd), 5n− 15(if n is even)} ∪

{7, 12, 17, · · · , 5n− 8, 5n− 7} ∪

{1, 5, 10, 20, · · · , 5n− 15(if n is odd), 5n− 10(if n is even)} ∪

{14, 24, · · · , 5n− 11(if n is odd), 5n− 16(if n is even), 5n− 4}.

and,f v(V ) = {2, 6, 11, · · · , 5n− 9, 5n− 5, 4, 8, 13, · · · , 5n− 7, 5n− 3}

Thus it is easy to verify, in both cases, that the above mentioned labeling is SVM -

labeling. Hence the theorem.

Example 2.4.4.SVM labeling ofL5 andL8 are shown in Figure2.3.
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2 6 11 16 20

4 8 13 18 22

2 6 11 16 21 26 31 35

37332823181384

1 5 10 14 21

3 9 15 19

2317127

3 9 15 34

1 5 10 14 20 24 30 36

7 12 17 22 27 32 38

19 25 29

Figure 2.3: SVM labeling ofL5 andL8 are shown.

2.5 Fans (Fn, n ≥ 2)

Definition 2.5.1. The fanFn, (n ≥ 2) is obtained by joining all vertices of a pathPn to a

further vertex called center, and containsn+ 1 vertices and2n− 1 edges.

The edges of the path in a fan are namedei, 1 ≤ i ≤ n − 1, whereas the vertices of

the path in a fan are namedvi,, 1 ≤ i ≤ n. The center vertex is namedc and the edges

connecting center and the vertices of the path are namedsi, 1 ≤ i ≤ n.

2.6 Fans (Fn, n ≥ 2) and their SVM - Behaviour

We discuss the SVM - behaviour of fans in the following three theorems.

Theorem 2.6.1.Fans (Fn, n ≥ 2) are SVM - graphs, whenn ≡ 1(mod 2).

Proof. Let (Fn, n ≥ 2) be a fan, wheren ≡ 1(mod 2). Let n = 2r − 1, r ≥ 2. We give

below the SVM - labeling ofF3 andF5 in Figure2.4.
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Figure 2.4: Super vertex-mean labelings ofF3 andF5.

Whenn ≥ 7, definef : E(Fn) → {1, 2, 3, ..., 3n} as follows:

f(ei) =







































































1, if i = 1,

3i− 1, if 2 ≤ i ≤ r − 2,

3i, if i = r − 1,

3i− 2, if i = r,

3i, if r + 1 ≤ i ≤ n− 2,

3i+ 1, if i = n− 1.

f(si) =







































3i, if 1 ≤ i ≤ r − 2,

3i− 1, if i = r − 1,

3i+ 1, if r ≤ i ≤ n− 2,

3i, if n− 1 ≤ i ≤ n.

The induced vertex labels are found to be as follows:

f v(vi) =



























2, if i = 1,

3i− 2, if 2 ≤ i ≤ r − 1,

3i− 1, if r ≤ i ≤ n.
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f v(c) = 3r

Remark: While computing the value off v(c), the exact value of it, without rounding off is

found to be3r + (n−5
2n

) for eachn ≥ 7. While rounding off, the value off v(c) remains3r,

becausen−5
2n

never attains0.5 asn−5
2n

is a converging function and converges to1
2
.

Further it can be easily verified thatf is a Super Vertex Mean labeling as it is an injective

mapping and the set of edge labels and induced vertex labels is {1, 2, 3, ..., 3n}. Therefore

Fn, n ≥ 2 andn ≡ 1(mod 2) is SVM.

Example 2.6.2.Super vertex-mean labeling ofF13 is shown in Figure2.5.

3
6 9

17

25

28

3436

1 5
8

11

14

18

19

24

27

303337

21

12

15

22

3139

Figure 2.5:F13 is an SVM.

Theorem 2.6.3.Fans (Fn, n ≥ 2) are SVM graphs, whenn ≡ 2(mod 4).

Proof. Let (Fn, n ≥ 2) be a fan, wheren ≡ 2(mod 4). The SVM labeling ofF2, F6 andF10

are given in Figure2.6.
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Figure 2.6: Super vertex-mean labelings ofF2, F6 andF10.

Whenn ≥ 14, definef : E(Fn) → {1, 2, 3, ..., 3n} as follows:

f(ei) =















































































































1, if i = 1,

3i− 1, if 2 ≤ i ≤ n
2
− 1,

3i, if i = n
2
,

3i+ 6, if i = n
2
+ 1,

3i− 2, if i = n
2
+ 2,

3i− 1, if i = n
2
+ 3,

3i, if n
2
+ 4 ≤ i ≤ n− 2,

3i, if i = n− 1 andn = 14,

3i+ 1, if i = n− 1 andn ≥ 18.

25



f(si) =



































































































3i, if 1 ≤ i ≤ n
2
− 1,

3i− 1, if i = n
2
,

3i− 2, if i = n
2
+ 1,

3i− 1, if i = n
2
+ 2,

3i+ 1, if n
2
+ 3 ≤ i ≤ n− 2,

3i+ 1, if i = n− 1 andn = 14,

3i, if i = n− 1 andn ≥ 18

3i, if i = n.

The induced vertex labels are found to be as follows:

f v(vi) =























































2, if i = 1,

3i− 2, if 2 ≤ i ≤ n
2
,

3i, if n
2
+ 1 ≤ i ≤ n

2
+ 2,

3i− 2, if i = n
2
+ 3,

3i− 1, if n
2
+ 4 ≤ i ≤ n.

f v(c) =
3n+ 4

2

Remark: The real value off v(c), without rounding off is3n+4
2

− 0.5 + (n−16
2n

) for each

n ≥ 18. While rounding off, the value off v(c) remains3n+4
2

, becausen−16
2n

never attains0.5

asn−16
2n

is a converging function and converges to1
2
.

Also it can be easily verified thatf is a Super Vertex Mean labeling as it is an injective

function andf(E(Fn)) ∪ f v(V (Fn)) is {1, 2, 3, ..., 3n}. ThereforeFn, n ≥ 2 andn ≡

2(mod 4) is SVM.

Example 2.6.4.Figure2.7 gives Super vertex-mean labeling ofF18.

Theorem 2.6.5.Fans (Fn, n ≥ 2) are SVM graphs, whenn ≡ 0(mod 4).
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Figure 2.7:F18 is an SVM.

Proof. Let (Fn, n ≥ 2) be a fan, wheren ≡ 0(mod 4). The SVM labeling ofF4 is illustrated

in Figure2.8.

Whenn ≥ 8, definef : E(Fn) → {1, 2, 3, ..., 3n} as follows:

f(ei) =























































1, if i = 1,

3i− 1, if 2 ≤ i ≤ n
2
,

3i+ 4, if i = n
2
+ 1,

3i, if n
2
+ 2 ≤ i ≤ n− 2,

3i+ 1, if i = n− 1.

f(si) =







































































3i, if 1 ≤ i ≤ n
2
,

3i+ 1, if i = n
2
+ 1,

3i− 4, if i = n
2
+ 2, andn = 8 or 12,

3i− 5, if i = n
2
+ 2, andn ≥ 16,

3i+ 1, if n
2
+ 3 ≤ i ≤ n− 2,

3i, if n− 1 ≤ i ≤ n.
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Figure 2.8: Super vertex-mean labeling ofF4.

The induced vertex labels are found to be as follows:

f v(vi) =







































2, if i = 1,

3i− 2, if 2 ≤ i ≤ n
2
,

3i, if i = n
2
+ 1,

3i− 1, if n
2
+ 2 ≤ i ≤ n.

f v(c) =











3n+2
2
, if n = 8 or 12,

3n+4
2
, if n ≥ 16.

Remark: As in the previous case2, the real value off v(c), without rounding off is3n+4
2

−

0.5 + (n−16
2n

) for eachn ≥ 16. While rounding off, the value off v(c) remains3n+4
2

, because

n−16
2n

never attains0.5 asn−16
2n

is a converging function and converges to1
2
.

It is an easy exercise to verify thatf is a Super Vertex Mean labeling.f is an injective

function and the union of edge labels and induced vertex labels is{1, 2, 3, ..., 3n}. Therefore

Fn, n ≥ 2 andn ≡ 0(mod 4) is SVM.

Example 2.6.6.Super vertex-mean labeling ofF12 andF16 is shown in Figure2.9.

2.7 Super Vertex Mean Number

The concept of Super Vertex Mean Number arises from the earlier concepts such as,

Mean Number, Super Mean Number etc. M.Somasundaram and R.Ponraj have introduced
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Figure 2.9: Super vertex-mean labeling ofF12 andF16.

the term Mean Number of a graph [33] and they have found the mean number of many

standard graphs. Later on, A.Nagarajan et.al. introduced the concept Super Mean Number

of a graph [24] and proved the existence of it for any graph by finding out the limit values

of it. Encouraged by their works we introduce this new concept which we like to name as

Super Vertex Mean Number or SVM - Number.

Definition 2.7.1. Letf be a an injective function of a(p, q) - graphG(V,E) defined fromE

to the set{1, 2, 3, · · · , n} that induces for each vertexv the label defined by the rulef v(v)

= Round
(∑

e∈Ev
f(e)

d(v)

)

, whereEv denotes the set of edges inG that are incident at the vertex

v. Letf(E) ∪ f v(V ) ⊆ {1, 2, 3, · · · , n}. If n is the smallest positive integer satisfying these

conditions together with the condition that all the vertex labels as well as the edge labels

are distinct, thenn is called the Super Vertex Mean Number (or SVM - number) of the graph

G(V,E), and is denoted bySVm(G).

2.7.1 Observation

It is observed thatSVm(G) = p+ q, for all SVM graphsG whose order isp and size isq.

And for other graphs(p, q) - graphG, SVm(G) ≥ p + q + 1. Therefore the lower limit

of SVm(G), for any graphG is p+ q.
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For graphs containing an isolated vertex or a leaf, the SuperVertex Mean Number does

not exist. i.e., for such graphsG, SVm(G) = ∞. Therefore, for any(p, q) – graphG,

p+ q ≤ SVm(G) ≤ ∞

.

Example 2.7.2.In Figure2.10., it is shown that the SVM - number ofC4, SVm(C4) = 9.

2 4

86

1

7

9

3

Figure 2.10:SVm(C4) is 9

2.8 Conclusion

While analyzing the Super Vertex Mean labeling of Cycles,Cn, we observe that the ideal

situation would have been that the sum of all the edge labels to be equal to the sum of all

vertex labels, as the induced vertex labels are the averagesof the two edge labels of the edges

that are incident on the vertex and each edge is considered twice to obtain the induced vertex

labels, since each cycle is a2–regular graph.

But we notice that in the case of odd cycles,Cn, n ≡ 1(mod 2), be it any type of

SVM labeling, there are exactly two vertices which have suchedges incident on it, that are

labeled with two integers one of which is odd and the other is even. Therefore the induced

vertex labels of these two vertices are0.5 each more than the actual average of the labels of

the incident edges on it, as per the definition of the SVM labeling (due to the rounding off

factor). When we sum up all the induced vertex labels, we get aninteger which is exactly
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one more than the sum of all the edge labels. Or in other words,this sum of all induced

vertex labels is0.5 more than the half of the sum of first2n positive integers. Similarly the

sum of all edge labels is0.5 less than the half of the sum of the first2n positive integers.

We also know that the half of the sum the of first2n positive integers is

(2n)(2n+ 1)

4

For example, type 2 labeling ofC5, where,2n = 10, and

Half of the sum of first10 positive integers =

10× 11

4
= 27.5

The sum of the vertex labels is2 + 4 + 8 + 9 + 5 = 28, and

The sum of the edge labels is1 + 6 + 10 + 7 + 3 = 27.

Therefore, the sum of the vertex labels forCn, n ≡ 1(mod 2), is given by the following

equation,
n
∑

i=1

f v(vi) = (
(2n)(2n+ 1)

4
+ 0.5)

and,

the sum of the edge labels forCn, n ≡ 1(mod 2), is

n
∑

i=1

f(ei) = (
(2n)(2n+ 1)

4
− 0.5).

On the same note, for even cycles,Cn, n ≡ 0(mod 2), there are exactly4 vertices which

have edges incident on them in such a manner that they are labeled with integers of which

one is odd and the other is even, resulting in an increase of2 in the sum of the vertex labels

to that of the edge labels.

Therefore, sum of the edge labels = sum of the vertex labels−2

Also, sum of the first2n positive integers =(2n)(2n+1)
2

So, sum of the vertex labels= (2n)(2n+1)
2

- sum of the edge labels

i.e.,= (2n)(2n+1)
2

- sum of the vertex labels+2

i.e.,2× sum of the vertex labels= (2n)(2n+1)
2

+ 2

Therefore the sum of the vertex labels ofCn, n ≡ 0(mod 2), is given by the following
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equation,
n
∑

i=1

f v(vi) = (
(2n)(2n+ 1)

4
+ 1).

and sum of the edge labels forCn, n ≡ 0(mod 2) is

n
∑

i=1

f(ei) = (
(2n)(2n+ 1)

4
− 1).

We conclude by stating that the above equations are not sufficient but necessary

conditions for a set of integers from the set of first2n positive integers to be the edge label

set,f(E) or the induced vertex label set,f v(V ) of a Super Vertex Mean labeling of any

type for any CycleCn. It is given as follows,

n
∑

i=1

f(ei) =











( (2n)(2n+1)
4

− 0.5) if n ≡ 1(mod 2)

( (2n)(2n+1)
4

− 1) if n ≡ 0(mod 2).

n
∑

i=1

f v(vi) =











( (2n)(2n+1)
4

+ 0.5) if n ≡ 1(mod 2)

( (2n)(2n+1)
4

+ 1) if n ≡ 0(mod 2).

Also all the fans (Fn, n ≥ 2) are SVM graphs. They are categorized into three cases,

of which the first includes fans whosen is odd and the last two cases together form those

whosen is even. The reader is further encouraged to explore the possibilities of proving that

all wheels(Wn, n ≥ 3) are SVM graphs. The wheelWn, n ≥ 3 is obtained by joining all

vertices of a cycleCn to a further vertex called center, and containsn + 1 vertices and2n

edges. Wheels have a lot in common with fans when we study theirSVM - behaviour.
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Chapter 3

Cyclic Snakes as SVM - graphs

A chain of cycles is known as a cyclic snake. Cyclic snakes can be constructed in a

variety of ways. This chapter presents one type of cyclic snakes and proves that all of them

are SVM -graphs. Before entering into the results, we define the term Cyclic Snakes and

introduce the type that we examine in this chapter.

3.1 Cyclic Snakes

Definition 3.1.1. A kCn - snake has been defined as a connected graph in which all the

blocks are isomorphic to the cycleCn and the block-cut point graph is a pathP , whereP is

the path of minimum length that contains all the cut verticesof akCn - snake. Barrientos [4]

has proved that anykCn – snake is represented by a strings1, s2, s3, · · · , sk−2 of integers of

lengthk− 2, where theith integer,si on the string is the distance betweenith andi+ 1th cut

vertices along the path,P , from one extreme and is taken fromSn = {1, 2, 3, · · · ,
⌊

n
2

⌋

}.

Remark: The strings obtained for both the extremes are assumed to be the same. In this

chapter we consider only those Cyclic snakes withsi = 1, for all 1 ≤ i ≤ k − 2.

3.1.1 Known Results

• Result 1.All the cycles exceptC4 are SVM - graphs [Theorem 2.2.1]
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• Result 2. All odd cycles can be SVM - labeled as many as
⌊

n
2

⌋

different ways and

every even cycle, exceptC4, can have
(⌊

n
2

⌋

− 1
)

types of SVM - labeling [Theorem

2.4.1 & Theorem 2.4.2]

3.1.2 Triangular Snakes

Theorem 3.1.2.A triangular snake withk blocks is an SVM - graph

Proof. Let kC3 be a triangular snake withk blocks withp vertices andq edges. Thenp =

2k + 1 and q = 3k. Let V (kC3) = {ui : 1 ≤ i ≤ k + 1} ∪ {vi : 1 ≤ i ≤ k} and

E(kC3) = {uiui+1, uivi, viui+1 : 1 ≤ i ≤ k}.

The edges ofkC3 are labeled as follows:

f(uiui+1) =







































1 if i = 1

5i if i is even andi 6= k

5i− 3 if i is odd andi 6= 1

5k + 1 if k is even andi = k

f(uivi) =











5i− 3 if i is even

5i− 2 if i is odd

f(viui+1) =



























5i if i is odd andi 6= k

5i− 1 if i is even

5k + 1 if k is odd andi = k

Then, the induced vertex labels are as follows:

f v(ui) =







































2 if i = 1

5i− 4 if 2 ≤ i ≤ k

5i− 6 if i = k + 1 and k is odd

5i− 5 if i = k + 1 and k is even
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f v(vi) =



























5i− 2 if i is even

5i− 1 if i is odd andi 6= k

5k if i = k is odd

It can be easily verified thatf is injective and the set of edge labels and induced vertex

labels is{1, 2, ...., 5k + 1}.

Example 3.1.3.Super vertex mean labeling of triangular snakes is shown in Figure3.1.

184 8 14

2 6 11 16 20

3 5 7 9
13

15
17

19

1 10 12 21

4 8 14 18 25

2 6 11 16 21 24

3 5 7 9 13 15 17 19 2623

1 10 12 20 22

Figure 3.1: Super vertex mean labeling of Triangular snakes

3.1.3 Quadrilateral Snakes

Theorem 3.1.4.Quadrilateral snakes withk ≥ 2 blocks and eachsi = 1 are SVM - graphs

Proof. Let kC4 be a quadrilateral snake withV (kC4) = {ui : 1 ≤ i ≤ k + 1} ∪ {ui, wi :

1 ≤ i ≤ k} andE(kC4) = {uiui+1, uivi, ui+1wi, viwi : 1 ≤ i ≤ k}. Thenp = 3k + 1 and

q = 4k.

Definef : E(kC4) → {1, 2, 3, ..., 7k + 1} as follows:

f(uiui+1) =











7i if 1 ≤ i ≤ k − 1

7k + 1 if i = k.
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f(uivi) = 7i− 6 if i ≤ i ≤ k.

f(viwi) =











3 if i = k

7i− 3 if 2 ≤ i ≤ k.

f(wiui+1) = 7i− 1 if i ≤ i ≤ k.

Then, the induced vertex labels are as follows:

f v(ui) =



























4 if i = 1

7k if i = k + 1

7i− 5 otherwise.

f v(vi) =











2 if i = 1

7i− 4 otherwise.

f v(wi) = 7i− 2 if 1 ≤ i ≤ k.

It can be easily verified thatf is injective and the set of edge labels and induced vertex

labels is{1, 2, 3, ..., 7k + 1}.

Example 3.1.5.A Super vertex-mean labeling of a Quadrilateral snake (4C4) is shown in

Figure3.2.
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21

18

25

29

Figure 3.2: A Super vertex-mean labeling of a Quadrilateralsnake,4C4
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3.2 Cyclic Snakes of cycles of higher orders

We proceed to prove that cyclic snakes of cycles of the other orders are also SVM -

graphs.

3.2.1 Pentagonal Snakes

Theorem 3.2.1.Pentagonal snakes withk blocks and eachsi = 1 are SVM -graphs.

Proof. Let kC5 be a pentagonal snake withk blocks ofC5.

Let V (kC5) = {vi,j ; 1 ≤ i ≤ k, 1 ≤ j ≤ 5} and

E(kC5) = {ei,j = vi,jvi,j+1 andei,5 = vi,5vi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ 4}.

Note that vi,5 = vi+1,1 for 1 ≤ i ≤ k − 1, and we refer this vertex asvi,5 throughout this

proof.

Now, p = 4k + 1, q = 5k andp+ q = 9k + 1.

Definef : E(kC5) → {1, 2, 3, · · · , 9k + 1} as follows,

f(ei,j) =







































2j − 1, if i = 1, and1 ≤ j ≤ 3

2j, if i = 1, and4 ≤ j ≤ 5

9i− 9, if 2 ≤ i ≤ k andj = 1

9i+ 2j − 9, if 2 ≤ i ≤ k and2 ≤ j ≤ 5.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(vi,j) =







































n+ 1, if i = 1, andj = 1

2j − 2, if i = 1, and2 ≤ j ≤ 3

2j − 1, if i = 1, andj = 4

9i+ 3, if 1 ≤ i ≤ k − 1 andj = 5
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f v(vi,j) =



























9i− 7, if 2 ≤ i ≤ k andj = 2

9i+ 2j − 10, if 2 ≤ i ≤ k, and3 ≤ j ≤ 5

9k, if i = k, andj = 5.

Clearly it can be proved that the union of the set of edge labelsand the induced vertex

labels is{1, 2, 3, · · · , 9k + 1}.

Therefore, pentagonal snakeskC5 with eachsi = 1 are Super Vertex Mean graphs.

Example 3.2.2.In Figure 3.3. we have an SVM labeling of a pentagonal snake with4 blocks.
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1 10

3
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9
13

17
2818

22 26

27

37

31

35

33

15

Figure 3.3: Super vertex-mean labeling of a Pentagonal snake with4 blocks

3.2.2 Hexagonal Snakes

Theorem 3.2.3.Hexagonal snakes with eachsi = 1, 1 ≤ i ≤ k − 2 are Super Vertex Mean

Graphs.

Proof. Let kC6 be a hexagonal snake withk blocks ofC6.

Let V (kC6) = {vi,j ; 1 ≤ i ≤ k, 1 ≤ j ≤ 6} and

E(kC6) = {ei,j = vi,jvi,j+1 andei,6 = vi,6vi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ 5}.

Note that vi,6 = vi+1,1 for 1 ≤ i ≤ k − 1, and we refer this vertex asvi,6 throughout this
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proof.

Now, p = 5k + 1 andq = 6k andp+ q = 11k + 1.

Definef : E(Gn) → {1, 2, 3, · · · , 11k + 1} as follows,

f(ei,j) =























































9− 3j, if i = 1, and1 ≤ j ≤ 2

6j − 17, if i = 1, and3 ≤ j ≤ 4

27− 3j, if i = 1, and5 ≤ j ≤ 6

11i− 11, if 2 ≤ i ≤ k, andj = 1

11i+ 2j − 11, if 2 ≤ i ≤ k, and2 ≤ j ≤ 6.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(vi,j) =







































































11− 3j, if i = 1, and1 ≤ j ≤ 3

6j − 20, if i = 1, and4 ≤ j ≤ 5

11i+ 3, if 1 ≤ i ≤ k − 1, andj = 6

11i− 9, if 2 ≤ i ≤ k, andj = 2

11i+ 2j − 12, if 2 ≤ i ≤ k, and3 ≤ j ≤ 5

11k, if i = k, andj = 6.

Clearly it can be proved that the union of the set of edge labelsand the induced vertex

labels is{1, 2, 3, · · · , 11k + 1}.

Therefore, hexagonal snakes withk blocks ofC6 are Super Vertex Mean graphs.

Example 3.2.4.SVM labeling of a hexagonal snake with3 blocks is given in Figure3.4.

3.2.3 kCn Snakes,n ≥ 7 and n ≡ 3(mod 4)

Theorem 3.2.5.Let kCn be a cyclic snake withk blocks ofCn, n ≥ 7 andn ≡ 3(mod 4).

ThenkCn is a Super Vertex Mean graph.
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Figure 3.4: Hexagonal snake with3 blocks is SVM

Proof. Let kCn be a cyclic snake withk blocks ofCn, n ≥ 7 andn ≡ 3(mod 4).

Let n = 2r + 1, andr = 2s+ 1 so thatn = 4s+ 3.

Let V (kCn) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ n} and

E(kCn) = {ei,j = vi,jvi,j+1 & ei,n = vi,nvi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1}.

Note thatvi,n = vi+1,1 for 1 ≤ i ≤ k − 1, and we refer this vertex asvi,n throughout this

proof.

Now, p = (n− 1)k + 1 andq = nk andp+ q = (2n− 1)k + 1.

Definef : E(kCn) → {1, 2, 3, · · · , (2n− 1)k + 1} as follows,

f(ei,j) =























































2j − 1, if i = 1, and1 ≤ j ≤ r + 1

2j, if i = 1, andr + 2 ≤ j ≤ n

(2n− 1)i− (2n− 1), if 2 ≤ i ≤ k andj = 1

(2n− 1)i+ 2j − (2n), if 2 ≤ i ≤ k and2 ≤ j ≤ r − s

(2n− 1)i+ 2j − (2n− 1), if 2 ≤ i ≤ k andr − s+ 1 ≤ j ≤ n.
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f(ei,j) =























































2j − 1, if i = 1, and1 ≤ j ≤ 2s+ 2

2j, if i = 1, and2s+ 3 ≤ j ≤ 4s+ 3

(8s+ 5)i− (8s+ 5), if 2 ≤ i ≤ k andj = 1

(8s+ 5)i+ 2j − (8s+ 6), if 2 ≤ i ≤ k and2 ≤ j ≤ s+ 1

(8s+ 5)i+ 2j − (8s+ 5), if 2 ≤ i ≤ k ands+ 2 ≤ j ≤ 4s+ 3.

And, the induced vertex labels are as follows:

f v(vi,j) =



















































































n+ 1, if i = 1, andj = 1

2j − 2, if i = 1, and2 ≤ j ≤ r + 1

2j − 1, if i = 1 andr + 2 ≤ j ≤ n− 1

(2n− 1)i+ r + 1, if 1 ≤ i ≤ k − 1 andj = n

(2n− 1)i+ 2j − (2n+ 1), if 2 ≤ i ≤ k and2 ≤ j ≤ r − s

(2n− 1)i+ 2j − (2n), if 2 ≤ i ≤ k andr − s+ 1 ≤ j ≤ n− 1

(2n− 1)k if i = k andj = n.

=



















































































4s+ 4, if i = 1, andj = 1

2j − 2, if i = 1, and2 ≤ j ≤ 2s+ 2

2j − 1, if i = 1 and2s+ 3 ≤ j ≤ 4s+ 2

(8s+ 5)i+ 2s+ 2, if 1 ≤ i ≤ k − 1 andj = 4s+ 3

(8s+ 5)i+ 2j − (8s+ 7), if 2 ≤ i ≤ k and2 ≤ j ≤ s+ 1

(8s+ 5)i+ 2j − (8s+ 6), if 2 ≤ i ≤ k ands+ 2 ≤ j ≤ 4s+ 2

(8s+ 5)k if i = k andj = 4s+ 3.

We prove the theorem by using mathematical induction ons.

Whens = 1, r = 3 andn = 7 and the cyclic snake is a heptagonal snake withk cycles

of C7.

Now, p = 7k + 1 andq = 7k andp+ q = 13k + 1.

41



Definef : E(kCn) → {1, 2, 3, · · · , 13k + 1} as follows,

f(ei,j) =























































2j − 1, if i = 1, and1 ≤ j ≤ 4

2j, if i = 1, and5 ≤ j ≤ 7

13i− 13, if 2 ≤ i ≤ k, andj = 1

13i+ 2j − 14, if 2 ≤ i ≤ k, andj = 2

13i+ 2j − 13, if 2 ≤ i ≤ k, and3 ≤ j ≤ 7.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(vi,j) =



















































































n+ 1, if i = 1, andj = 1

2j − 2, if i = 1, and2 ≤ j ≤ 4

2j − 1, if i = 1, and5 ≤ j ≤ 6

13i+ 14, if 1 ≤ i ≤ k − 1, andj = 7

13i− 11, if 2 ≤ i ≤ k, andj = 2

13i+ 2j − 14, if 2 ≤ i ≤ k and3 ≤ j ≤ 6

13k, if i = k, andj = 7.

Clearly it can be proved that the union of the set of edge labelsand the induced vertex

labels is{1, 2, 3, · · · , 13k + 1}.

Let,

A1 = {2j − 1, i = 1 & 1 ≤ j ≤ 4},

A2 = {2j, i = 1 & 5 ≤ j ≤ 7},

A3 = {13i− 13, 2 ≤ i ≤ k & j = 1},

A4 = {13i+ 2j − 14, 2 ≤ i ≤ k & j = 2},

A5 = {13i+ 2j − 13, 2 ≤ i ≤ k & 3 ≤ j ≤ 7}.
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And let,

B1 = {8},

B2 = {2, 4, 6},

B3 = {9, 11},

B4 = {17, 30, 43, 56, · · · , 13k − 22, 13k − 9},

B5 = {15, 28, 41, · · · , 13k − 24, 13k − 11},

B6 = {18, 20, 22, 24, · · · , 13k − 8, 13k − 6, 13k − 4, 13k − 2},

B7 = {13k}.

A1 ∪ B2 ∪ B1 ∪B3 ∪ A2 = {1, 2, 3, 4 · · · , 11, 12, 14},

A3 = {13, 26, 39, · · · , 13k − 13},

B5 ∪ A4 ∪ B4 ∪B6 ∪ A5 = {15, 16, · · · , 24, 25, 27, 28, · · · ,

38, 40, · · · , 13k − 1, 13k + 1},

A1 ∪ B2 ∪ B1 ∪B3 ∪ A2 ∪ A3 ∪ B5 ∪ A4∪

B4 ∪ B6 ∪ A5 ∪ B7

= {1, 2, 3, · · · , 13k − 1, 13k, 13k + 1}.

Thus the theorem is true whens = 1.

Now we assume that the theorem is true fors− 1 (i.e., forr − 2 andn− 4). The induction

hypothesis is that the edge labeling,

f : E(kCn−4) → {1, 2, 3, · · · , (2n− 9)k + 1},

defined as follows, is a Super Vertex Mean Labeling, wheren ≥ 11 andn ≡ 3(mod 4) and

k ≥ 2.
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f(ei,j) =























































2j − 1, if i = 1, and1 ≤ j ≤ r − 1

2j, if i = 1, andr ≤ j ≤ n− 4

(2n− 9)i− (2n− 9), if 2 ≤ i ≤ k andj = 1

(2n− 9)i+ 2j − (2n− 8), if 2 ≤ i ≤ k and2 ≤ j ≤ r − s− 1

(2n− 9)i+ 2j − (2n− 9), if 2 ≤ i ≤ k andr − s ≤ j ≤ n− 4.

=























































2j − 1, if i = 1, and1 ≤ j ≤ 2s

2j, if i = 1, and2s+ 1 ≤ j ≤ 4s− 1

(8s− 3)i− (8s− 3), if 2 ≤ i ≤ k andj = 1

(8s− 3)i+ 2j − (8s− 2), if 2 ≤ i ≤ k and2 ≤ j ≤ s

(8s− 3)i+ 2j − (8s− 3), if 2 ≤ i ≤ k ands+ 1 ≤ j ≤ 4s− 1.

Now we prove that the result is true for anys. If we replaces with s + 1 in the above

mappings we get,

f(ei,j) =























































2j − 1, if i = 1, and1 ≤ j ≤ 2s+ 2

2j, if i = 1, and2s+ 3 ≤ j ≤ 4s+ 3

(8s+ 5)i− (8s+ 5), if 2 ≤ i ≤ k andj = 1

(8s+ 5)i+ 2j − (8s+ 6), if 2 ≤ i ≤ k and2 ≤ j ≤ s+ 1

(8s+ 5)i+ 2j − (8s+ 5), if 2 ≤ i ≤ k ands+ 2 ≤ j ≤ 4s+ 3.

=























































2j − 1, if i = 1, and1 ≤ j ≤ r + 1

2j, if i = 1, andr + 2 ≤ j ≤ n

(2n− 1)i− (2n− 1), if 2 ≤ i ≤ k andj = 1

(2n− 1)i+ 2j − (2n), if 2 ≤ i ≤ k and2 ≤ j ≤ r − s

(2n− 1)i+ 2j − (2n− 1), if 2 ≤ i ≤ k andr − s+ 1 ≤ j ≤ n.
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And, the induced vertex label is,

f v(vi,j) =



















































































4s+ 4, if i = 1, andj = 1

2j − 2, if i = 1, and2 ≤ j ≤ 2s+ 2

2j − 1, if i = 1 and2s+ 3 ≤ j ≤ 4s+ 2

(8s+ 5)i+ 2s+ 2, if 1 ≤ i ≤ k − 1 andj = 4s+ 3

(8s+ 5)i+ 2j − (8s+ 7), if 2 ≤ i ≤ k and2 ≤ j ≤ s+ 1

(8s+ 5)i+ 2j − (8s+ 6), if 2 ≤ i ≤ k ands+ 2 ≤ j ≤ 4s+ 2

(8s+ 5)k if i = k andj = 4s+ 3.

=



















































































n+ 1, if i = 1, andj = 1

2j − 2, if i = 1, and2 ≤ j ≤ r + 1

2j − 1, if i = 1 andr + 2 ≤ j ≤ n− 1

(2n− 1)i+ r + 1, if 1 ≤ i ≤ k − 1 andj = n

(2n− 1)i+ 2j − (2n+ 1), if 2 ≤ i ≤ k and2 ≤ j ≤ r − s

(2n− 1)i+ 2j − (2n), if 2 ≤ i ≤ k andr − s+ 1 ≤ j ≤ n− 1

(2n− 1)k if i = k andj = n.

It is clear thatf(E) ∪ f v(V ) = {1, 2, 3, · · · , (2n)k, (2n− 1)k, (2n− 1)k + 1}

Thus the theorem is proved by Mathematical Induction.

Example 3.2.6.SVM Labeling of Undecagonal snake with4 blocks ofC11 is shown in Figure

3.5.

3.2.4 kCn Snakes,n ≥ 8 and n ≡ 0(mod 4)

Theorem 3.2.7.Let kCn be a cyclic snake withk blocks ofCn, n ≥ 8 andn ≡ 0(mod 4).

ThenkCn is a Super Vertex Mean graph.

Proof. Let kCn be a cyclic snake withk blocks ofCn, n ≥ 8 andn ≡ 0(mod 4).

Let n = 2r, andr = 2s so thatn = 4s.
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Figure 3.5: SVM labeling of an Undecagonal(C11) snake with4 blocks

Let V (kCn) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ n} and

E(kCn) = {ei,j = vi,jvi,j+1 & ei,n = vi,nvi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1}.

Note thatvi,n = vi+1,1 for 1 ≤ i ≤ k − 1, and we refer this vertex asvi,n throughout this

proof.

Now, p = (n− 1)k + 1 andq = nk andp+ q = (2n− 1)k + 1.
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Definef : E(kCn) → {1, 2, 3, · · · , (2n− 1)k + 1} as follows,

f(ei,j) =















































































































2n− 2j − 2, if i = 1, and1 ≤ j ≤ r − 4

2n− 2j − 3, if i = 1, andr − 3 ≤ j ≤ n− 6

3n− 3j − 3, if i = 1, andn− 5 ≤ j ≤ n− 4

1, if i = 1, andj = n− 3

7, if i = 1, andj = n− 2

4n− 2j − 2, if i = 1, andn− 1 ≤ j ≤ n

(2n− 1)i− (2n− 1), if 2 ≤ i ≤ k andj = 1

(2n− 1)i+ 2j − 2n, if 2 ≤ i ≤ k and2 ≤ j ≤ s

(2n− 1)i+ 2j − (2n− 1), if 2 ≤ i ≤ k ands+ 1 ≤ j ≤ n.

And, the induced vertex labels are as follows:

f v(vi,j) =






























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




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
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


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
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
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
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


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



















2n− 2j − 1, if i = 1, and1 ≤ j ≤ r − 3

2n− 2j − 2, if i = 1, andr − 2 ≤ j ≤ n− 5

5, if i = 1, andj = n− 4

8 + 2j − 2n, if i = 1, andn− 3 ≤ j ≤ n− 2

n+ 4, if i = 1, andj = n− 1

(2n− 1)i+ r, if 1 ≤ i ≤ k − 1 andj = n

(2n− 1)i+ 2j − (2n+ 1), if 2 ≤ i ≤ k and2 ≤ j ≤ s

(2n− 1)i+ 2j − 2n, if 2 ≤ i ≤ k ands+ 1 ≤ j ≤ n− 1

(2n− 1)k, if i = k andj = n.

It can be easily proved using mathematical induction ons as in the above theorem that

the labelingf : E(kCn) → {1, 2, 3, . . . , (2n− 1)k + 1} is an SVM labeling.

Hint: Whereverr andn appear, we need to change those variables intos usingn = 4s and

r = 2s.
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Example 3.2.8.A Dodeagonal(C12) Snake with4 blocks is an SVM graph as shown in

Figure3.6.
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Figure 3.6: SVM labeling of a Dodecagonal(C12) snake with4 blocks.

3.2.5 kCn Snakes,n ≥ 9 and n ≡ 1(mod 4)

Theorem 3.2.9.Let kCn be a cyclic snake withk blocks ofCn, n ≥ 9 andn ≡ 1(mod 4).

ThenkCn is a Super Vertex Mean graph.

Proof. Let kCn be a cyclic snake withk blocks ofCn, n ≥ 9 andn ≡ 1(mod 4).

Let n = 2r + 1, andr = 2s so thatn = 4s+ 1.
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Let V (kCn) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ n} and

E(kCn) = {ei,j = vi,jvi,j+1 & ei,n = vi,nvi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1}.

Note thatvi,n = vi+1,1 for 1 ≤ i ≤ k − 1, and we refer this vertex asvi,n throughout this

proof.

Now, p = (n− 1)k + 1 andq = nk andp+ q = (2n− 1)k + 1.

Definef : E(kCn) → {1, 2, 3, · · · , (2n− 1)k + 1} as follows,

f(ei,j) =







































































2j − 1, if i = 1, and1 ≤ j ≤ r + 1

2j, if i = 1, andr + 2 ≤ j ≤ n

(2n− 1)i− 2j − 8, if 2 ≤ i ≤ k and1 ≤ j ≤ r − 3

(2n− 1)i− 2j − 6, if 2 ≤ i ≤ k andr − 2 ≤ j ≤ n− 7

(2n− 1)i− 2n+ 5, if 2 ≤ i ≤ k andj = n− 6,

(2n− 1)i− 2n+ 2j + 1, if 2 ≤ i ≤ k andn− 5 ≤ j ≤ n.

And, the induced vertex labels are as follows:

f v(vi,j) =
























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












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




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






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




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
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



















n+ 1, if i = 1, andj = 1

2j − 2, if i = 1, and2 ≤ j ≤ r + 1

2j − 1, if i = 1, andr + 2 ≤ j ≤ n− 1

3n+ 4, if 1 ≤ i ≤ k − 1 andj = n

(2n− 1)i− 2j − 7, if 2 ≤ i ≤ k and2 ≤ j ≤ r − 3

(2n− 1)i− 2j − 13, if 2 ≤ i ≤ k andr − 2 ≤ j ≤ n− 6

(2n− 1)i− n− 4, if 2 ≤ i ≤ k andj = n− 5

(2n− 1)i+ 2j − 2n, if 2 ≤ i ≤ k andn− 4 ≤ j ≤ n− 1

(2n− 1)k, if i = k andj = n.

It can be easily proved using mathematical induction ons as in the above theorems that

the labelingf : E(kCn) → {1, 2, 3, . . . , (2n− 1)k + 1} is an SVM labeling.

49



Example 3.2.10.SVM labeling of a Tridecagonal(C13) snake with2 blocks is shown in

Figure 3.7.
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Figure 3.7: SVM labeling of a Tridecagonal(C13) snake with2 blocks.

3.2.6 kCn Snakes,n ≥ 10 and n ≡ 2(mod 4)

Theorem 3.2.11.LetkCn be a cyclic snake withk blocks ofCn, n ≥ 10 andn ≡ 2(mod 4).

ThenkCn is a Super Vertex Mean graph.

Proof. Let kCn be a cyclic snake withk blocks ofCn, n ≥ 10 andn ≡ 2(mod 4).

Let n = 2r, andr = 2s+ 1 so thatn = 4s+ 2.

Let V (kCn) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ n} andE(kCn) = {ei,j = vi,jvi,j+1 & ei,n =

vi,nvi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1}.

Note thatvi,n = vi+1,1 for 1 ≤ i ≤ k − 1, and we refer this vertex asvi,n throughout this

proof.
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Now, p = (n− 1)k + 1 andq = nk andp+ q = (2n− 1)k + 1.

Definef : E(kCn) → {1, 2, 3, · · · , (2n− 1)k + 1} as follows,

f(ei,j) =






















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








































































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
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























2n− 2j − 2, if i = 1, and1 ≤ j ≤ r − 4

2n− 2j − 3, if i = 1, andr − 3 ≤ j ≤ n− 6

3n− 3j − 9, if i = 1, andn− 5 ≤ j ≤ n− 4

1, if i = 1, andj = n− 3

7, if i = 1, andj = n− 2

4n− 2j − 2, if i = 1, andn− 1 ≤ j ≤ n

2n− 1, if i = 2, andj = 1

2n+ 2j − 2, if i = 2, and2 ≤ j ≤ r − s

2n+ 2j − 1, if i = 2, andr − s+ 1 ≤ j ≤ n− 1

(2n− 1)i+ 3, if 2 ≤ i ≤ k − 1 andj = n

(2n− 1)i+ 2j − 2n− 1, if 3 ≤ i ≤ k and1 ≤ j ≤ 2

(2n− 1)i+ 2j − 2n, if 3 ≤ i ≤ k and3 ≤ j ≤ r − s

(2n− 1)i+ 2j − 2n+ 1, if 3 ≤ i ≤ k andr − s+ 1 ≤ j ≤ n− 1

(2n− 1)k + 1, if i = k andj = n.

And, the induced vertex labels are as follows:

f v(vi,j) =























































2n− 2j − 1, if i = 1, and1 ≤ j ≤ r − 3

2n− 2j − 2, if i = 1, andr − 2 ≤ j ≤ n− 5

5, if i = 1, andj = n− 4

8 + 2j − 2n, if i = 1, andn− 3 ≤ j ≤ n− 2

n+ 4, if i = 1, andj = n− 1
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f v(vi,j) =












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
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




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


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


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



















(2n− 1)i+ r + 1, if 1 ≤ i ≤ k − 1 andj = n

2n+ 2j − 1, if i = 2, and2 ≤ j ≤ r − s

2n+ 2j − 2, if i = 2, andr − s+ 1 ≤ j ≤ n− 1

(2n− 1)i+ 2n+ 2, if 3 ≤ i ≤ k andj = 2

(2n− 1)i+ 2j − 2n− 1, if 3 ≤ i ≤ k and3 ≤ j ≤ r − s

(2n− 1)i+ 2j − 2n, if 3 ≤ i ≤ k andr − s+ 1 ≤ j ≤ n− 1

(2n− 1)k, if i = k andj = n.

It can be easily proved using mathematical induction ons as in the above theorems that

the labelingf : E(kCn) → {1, 2, 3, . . . , (2n− 1)k + 1} is an SVM - labeling.

Example 3.2.12.Tetradeagonal(C14) snake with3 blocks is SVM as shown in Figure3.8.

3.3 Conclusion

In this chapter, we have proved that all the cyclic snakes areSuper Vertex Mean graphs,

provided eachsi on the strings1, s2, s3, · · · , sk−2 which is used to represent akCn cycle is

equal to1. This si is the distance betweenith and i+ 1th cut vertices along the path,P ,

whereP is the path of minimum length that contains all the cut vertices of akCn – snake,

starting from one extreme and is taken fromSn = {1, 2, 3, · · · ,
⌊

n
2

⌋

}.

In the case of Super Mean Labeling, the vertex analogue of SVM, it was easy to obtain

a general formula for cyclic snakes represented the strings1, s2, s3, · · · , sk−2, where eachsi

need not be equal to1. This is because when we calculate the induced edge label by finding

the average of the labels of two vertices which are the end points of the respective edge, we

need to only consider those two vertices. Therefore the average remains the same as in the

case of cycles.

But for Super Vertex Mean labeling, when we find the induced vertex labeling of the

connecting vertices of a cyclic snake we have to consider four edges that are incident on

those vertices to get the average. Thus it becomes pretty difficult to obtain a general formula
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Figure 3.8: SVM labeling of a Tetradecagonal(C14) snake with3 blocks.

for cyclic snakes represented the strings1, s2, s3, · · · , sk−2, where eachsi need not be equal

to 1. Another possibility in this area is to find out SVM - labelings of cyclic graphs whose

eachsi is equal, and need not be equal to1, as we have proved in this paper.

Another possibility that emerges for further study is that we try to explore the SVM -

labeling ofKC – snakes, which are defined as connecting graphs in which eachof the k

many blocks is isomorphic to a cycleCn for somen and the block - cut point graph is a path.

As in the case ofkCn - snakes, akC - snake too can be represented by a string of integers,

s1, s2, · · · , sk−2. Thus, it is still an open problem to label akC – snake which has either the

same value or different values for eachsi.
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Chapter 4

Linear Cyclic Snakes as SVM - Graphs

Linear cyclic snakes are worthy of a special mentioning as the constituent cycles are

equally distanced from one another. In the previous chapterwe have already defined Cyclic

snakes. Here we bring in the slight nuance that is found in thecharacteristic of linear cyclic

snake.

4.1 Linear Cyclic Snakes

Definition 4.1.1. A kCn– snake is said to belinear if each integersi of its string is equal to
⌊

n
2

⌋

.

Remark: The strings obtained from both the extremes are assumed to bethe same. A linear

cyclic snake,kCn is obtained fromk copies ofCn by identifying the vertexvi,r+1 in the ith

copy ofCn at a vertexvi+1,1 in the(i+ 1)th copy ofCn, where1 ≤ i ≤ k− 1 andn = 2r or

n = 2r + 1, depending upon whethern is even or odd respectively. We refer this vertex as

vi+1,1 throughout this chapter.

4.1.1 Known Result

• A linear triangular snake,kC3 with k blocks is an SVM - graph.
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4.2 Linear Cyclic snakes of cycles of higher orders

Now we proceed to prove that other linear cyclic snakes too are Super Vertex Mean

Graphs.

4.2.1 Linear Quadrilateral Snake

Theorem 4.2.1.Linear Quadrilateral snakes,kC4 with k ≥ 2 blocks are SVM - graphs.

Proof. A linear quadratic cyclic snakekC4 is the graph obtained fromk, k ≥ 2 copies ofC4

by identifying the vertexvi,3 in the ith copy ofC4 at a vertexvi+1,1 in the(i+ 1)th copy of

C4, where1 ≤ i ≤ k − 1.

Let kC4 be a linear quadrilateral snake withp vertices andq edges. Thenp = 3k + 1

andq = 4k. Suppose we name the vertices of the given linear quadrilateral snake in the

anti-clock wise direction, so that

V (kC4) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ 4} and

E(kC4) = {ei,j = vi,jvi,j+1 andei,4 = vi,4vi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ 3}.

Definef : E(kC4) → {1, 2, 3, ..., 7k + 1} as follows:

When1 ≤ i ≤ k − 1, andk ≥ 2,

f(ei,j) =























































1, if i = 1, andj = 1

7i− 5, if 2 ≤ i ≤ k − 1, andj = 1

7i− 1, if 1 ≤ i ≤ k − 1, andj = 2

7i, if 1 ≤ i ≤ k − 1, andj = 3

7i− 4, if 1 ≤ i ≤ k − 1, andj = 4.
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Wheni = k, k ≥ 2, andk is even,

f(ei,j) =







































7k − 6, if j = 1,

7k − 3, if j = 2,

7k − 1, if j = 3,

7k + 1, if j = 4.

Wheni = k, k ≥ 3, andk is odd,

f(ei,j) =







































7k − 5, if j = 1,

7k − 2, if j = 2,

7k + 1, if j = 3,

7k − 4, if j = 4.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

When1 ≤ i ≤ k − 1, andk ≥ 2,

f v(vi,j) =


















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

















2, if i = 1, andj = 1,

7i− 6, if 2 ≤ i ≤ k − 1, andj = 1,

7i− 3, if 1 ≤ i ≤ k − 1, andj = 2,

7i− 2, if 1 ≤ i ≤ k − 1, andj = 4.

Wheni = k, k ≥ 2, andk is even,

f v(vi,j) =






















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













7k − 5, if j = 1,

7k − 4, if j = 2,

7k − 2, if j = 3,

7k, if j = 4.
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Wheni = k, k ≥ 3, andk is odd,

f v(vi,j) =







































7k − 6, if j = 1,

7k − 3, if j = 2,

7k, if j = 3,

7k − 1, if j = 4.

It can be easily verified that the set of edge labels and induced vertex labels is

{1, 2, 3, ..., 7k + 1} as follows;

Case 1: Whenk is even,

f(E) = {1, 6, 7, 3, 9, 13, 14, 10, 16, 20, 21, 27, · · · ,

7k − 12, 7k − 8, 7k − 7, 7k − 11, 7k − 6, 7k − 3, 7k − 1, 7k + 1}

And,

f v(V ) = {2, 4, 8, 5, 11, 15, 12, 18, 22, 19, · · · ,

7k − 10, 7k − 5, 7k − 9, 7k − 4, 7k − 2, 7k}

Therefore,

f(E) ∪ f v(V ) = {1, 2, 3, 4, · · · , 7k − 12, 7k − 11, 7k − 10, 7k − 9, 7k − 8,

7k − 7, 7k − 6, 7k − 5, 17k − 4, 7k − 3, 7k − 2, 7k − 2, 7k, 7k + 1}.

Case 2: Whenk is odd,

f(E) = {1, 6, 7, 3, 9, 13, · · · , 7k − 12, 7k − 8, 7k − 7,

7k − 11, 7k − 5, 7k − 2, 7k + 1, 7k − 4}

And,

f v(V ) = {2, 4, 8, 5, · · · , 7k − 10, 7k − 6, 7k − 9, 7k − 3, 7k, 7k − 1}

Therefore,

f(E) ∪ f v(V ) = {1, 2, 3, 4, · · · , 7k − 12, 7k − 11, 7k − 10, 7k − 9, 7k − 8,

7k − 7, 7k − 6, 7k − 5, 17k − 4, 7k − 3, 7k − 2, 7k − 2, 7k, 7k + 1}.

In both the cases above, it has been proved that the labelingf : E(kC4) → {1, 2, · · · , 7k+1}

is a Super Vertex Mean labeling.
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Example 4.2.2.Super vertex-mean labeling of two Linear Quadrilateral snakes with4 and

3 blocks are shown in Figures4.1 and4.2 respectively.
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Figure 4.1: A Super vertex-mean labeling of a linear quadrilateral snake with4 blocks
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Figure 4.2: Super vertex mean labeling of a linear quadrilateral snake with3 blocks

4.2.2 Linear Pentagonal Snake

Theorem 4.2.3.Linear Pentagonal snakes,kC5with k, k ≥ 2 blocks are SVM - graphs.

Proof. A linear pentagonal cyclic snakekC5 is the graph obtained fromk, k ≥ 2 copies of

C5 by identifying the vertexvi,3 in theith copy ofC5 at a vertexvi+1,1 in the(i+ 1)th copy

of C5, where1 ≤ i ≤ k − 1.

Let kC5 be a linear pentagonal snake withk, k ≥ 2 blocks ofC5.

Let,

V (kC5) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ 5} and

E(kC5) = {ei,j = vi,jvi,j+1 andei,5 = vi,5vi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ 4}.

Now, p = 4k + 1, q = 5k andp+ q = 9k + 1.

Definef : E(kC5) → {1, 2, 3, · · · , 9k + 1} as follows,
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Wheni = 1,

f(ei,j) =







































5, if j = 1,

2j + 4, if 2 ≤ j ≤ 3,

1, if j = 4,

3, if j = 5.

And When2 ≤ i ≤ k,

f(ei,j) =



























9i− 9, if j = 1,

9i+ 2j − 5, if 2 ≤ j ≤ 3,

9i+ 3j − 18, if 4 ≤ j ≤ 5.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

Wheni = 1,

f v(vi,j) =







































4, if j = 1,

7, if j = 2,

6, if j = 4,

2, if j = 5.

And when2 ≤ i ≤ k,

f v(vi,j) =



























9i+ 2j − 9, if 1 ≤ j ≤ 2

9i− 2j + 6, if 4 ≤ j ≤ 5

9k, if i = k, andj = 3.

Clearly it can be proved that the union of the set of edge labelsand the induced vertex

labels is{1, 2, 3, · · · , 9k + 1}.

Therefore, linear pentagonal snakeskC5 are Super Vertex Mean graphs.

Example 4.2.4.SVM labeling of a linear pentagonal snake with3 blocks is shown in Figure

4.3.
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Figure 4.3: SVM labeling of a linear pentagonal snake,3C5.

4.2.3 Linear Hexagonal Snake

Theorem 4.2.5.Linear Hexagonal snakes,kC6, k ≥ 2 are Super Vertex Mean Graphs.

Proof. Let kC6 be a hexagonal snake withk, k ≥ 2 blocks ofC6.

Let,

V (kC6) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ 6} and

E(kC6) = {ei,j = vi,jvi,j+1 andei,6 = vi,6vi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ 5}.

Now, p = 5k + 1 andq = 6k andp+ q = 11k + 1.

Definef : E(Gn) → {1, 2, 3, · · · , 11k + 1} as follows,

f(ei,j) =







































































3j, if i = 1, and1 ≤ j ≤ 4,

7, if i = 1, andj = 5,

1, if i = 1, andj = 6,

11i− 4j, if 2 ≤ i ≤ k, and1 ≤ j ≤ 2,

11i+ 3j − 11, if 2 ≤ i ≤ k, and3 ≤ j ≤ 4,

11i− 8j + 37, if 2 ≤ i ≤ k, and5 ≤ j ≤ 6.

It can be easily verified thatf is injective.
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Then, the induced vertex labels are as follows:

f v(vi,j) =







































































11i+ 3j − 12, if 1 ≤ i ≤ k, and1 ≤ j ≤ 2,

8, if i = 1, andj = 3,

11i− 5, if 2 ≤ i ≤ k, andj = 3,

11k, if i = k, andj = 4,

11i− 1, if 1 ≤ i ≤ k, andj = 5,

11i− 7, if 1 ≤ i ≤ k, andj = 6.

Clearly it can be proved that the union of the set of edge labelsand the induced vertex

labels is{1, 2, 3, · · · , 11k + 1}.

Therefore, linear hexagonal snakes,kC6 with k blocks ofC6 are Super Vertex Mean

graphs.

Example 4.2.6.Figure4.4 shows SVM labeling of a linear hexagonal snake with3 blocks.
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Figure 4.4: A linear hexagonal snake,3C6 is SVM labeled

.

4.2.4 Linear Heptagonal Snake

Theorem 4.2.7.Linear Heptagonal snakes,kC7, k ≥ 2 are Super Vertex Mean Graphs.

Proof. Let kC7 be a linear heptagonal snake withk, k ≥ 2 blocks ofC7. Let,

V (kC7) = {vi,j ; 1 ≤ i ≤ k, 1 ≤ j ≤ 7} andE(kC7) = {ei,j = vi,jvi,j+1 and ei,7 =

vi,7vi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ 6}.
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Now, p = 6k + 1 andq = 7k andp+ q = 13k + 1.

Definef : E(Gn) → {1, 2, 3, · · · , 13k + 1} as follows,

f(ei,j) =







































































4j − 1, if i = 1, and1 ≤ j ≤ 3,

30− 4j, if i = 1, and4 ≤ j ≤ 6,

1, if i = 1, andj = 7,

13i+ 2j − 7, if 2 ≤ i ≤ k, and1 ≤ j ≤ 4,

13i− 13, if 2 ≤ i ≤ k, andj = 5,

13i+ 2j − 21, if 2 ≤ i ≤ k, and6 ≤ j ≤ 7.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(vi,j) =



































































































2, if i = 1, andj = 1,

4j − 3, if i = 1, and2 ≤ j ≤ 3,

32− 4j, if i = 1, and5 ≤ j ≤ 7,

13i− 10, if 2 ≤ i ≤ k, andj = 1,

13i+ 2j − 8, if 2 ≤ i ≤ k, and2 ≤ j ≤ 3,

13i− 6, if 2 ≤ i ≤ k, andj = 5,

13i+ 3j − 29, if 2 ≤ i ≤ k, and6 ≤ j ≤ 7,

13k, if i = k, andj = 4.

Clearly it can be proved that the union of the set of edge labelsand the induced vertex

labels is{1, 2, 3, · · · , 13k + 1}.

Therefore, linear heptagonal snakes,kC7 with k blocks ofC7 are Super Vertex Mean

graphs.

Example 4.2.8.Given in Figure4.5 is an SVM labeling of a linear heptagonal snake,3C7.
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Figure 4.5: Super Vertex Mean Labeling of3C7 linear cyclic snake.

4.2.5 LinearkCn, k ≥ 2 blocks ofCn, n ≥ 8 and n ≡ 0(mod 2)

Theorem 4.2.9.Let kCn be a linear cyclic snake withk, k ≥ 2 blocks ofCn, n ≥ 8 and

n ≡ 0(mod 2). ThenkCn is a Super Vertex Mean graph.

Proof. LetkCn be a linear cyclic snake withk, k ≥ 2 blocks ofCn, n ≥ 8 andn ≡ 0(mod 2)

and letn = 2r, r ≥ 4.

Let V (kCn) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ n} and

E(kCn) = {ei,j = vi,jvi,j+1 & ei,n = vi,nvi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1}.

Now, p = (n− 1)k + 1 andq = nk andp+ q = (2n− 1)k + 1.

Definef : E(kCn) → {1, 2, 3, · · · , (2n− 1)k + 1} as follows,

f(ei,j) =























































3j, if i = 1, and1 ≤ j ≤ 3,

4j − 3, if i = 1, and4 ≤ j ≤ r,

4n− 4j + 4, if i = 1, andr + 1 ≤ j ≤ n− 2,

7, if i = 1, andj = n− 1,

1, if i = 1, andj = n,
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f(ei,j) =







































































(2n− 1)i− 2n+ 8, if 2 ≤ i ≤ k, andj = 1,

(2n− 1)i− 2n+ 4, if 2 ≤ i ≤ k, andj = 2,

(2n− 1)i− 2n+ 10, if 2 ≤ i ≤ k, andj = 3,

(2n− 1)i− 2n+ 4j − 2, if 2 ≤ i ≤ k, and4 ≤ j ≤ r,

(2n− 1)i+ 2n− 4j + 5, if 2 ≤ i ≤ k, andr + 1 ≤ j ≤ n− 1,

(2n− 1)(i− 1), if i = k, andj = n.

And, the induced vertex labels are as follows:

f v(vi,j) =



























































































































































2, if i = 1, andj = 1,

3j − 1, if i = 1, and2 ≤ j ≤ 4,

4j − 5, if i = 1, and5 ≤ j ≤ r,

4n− 4j + 6, if i = 1, andr + 2 ≤ j ≤ n− 1,

4, if i = 1, andj = n,

(2n− 1)i− 2n+ 3, if 2 ≤ i ≤ k, andj = 1,

(2n− 1)i− 2n+ 6, if 2 ≤ i ≤ k, andj = 2,

(2n− 1)i− 2n+ 7, if 2 ≤ i ≤ k, andj = 3,

(2n− 1)i− 2n+ 4j − 4, if 2 ≤ i ≤ k, and4 ≤ j ≤ r,

(2n− 1)i+ 2n− 4j + 7, if 2 ≤ i ≤ k, andr + 2 ≤ j ≤ n− 1,

(2n− 1)i− 2n+ 5, if 2 ≤ i ≤ k, andj = n,

(2n− 1)k, if i = k, andj = r + 1.

We prove the theorem by mathematical induction onr, wheren = 2r, r ≥ 4.

The above edge labeling functionf(e) and the induced vertex labeling functionf v(v)

are expressed in terms ofr as follows;
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f(ei,j) =















































































































































3j, if i = 1, and1 ≤ j ≤ 3,

4j − 3, if i = 1, and4 ≤ j ≤ r,

8r − 4j + 4, if i = 1, andr + 1 ≤ j ≤ 2r − 2,

7, if i = 1, andj = 2r − 1,

1, if i = 1, andj = 2r,

(4r − 1)i− 4r + 8, if 2 ≤ i ≤ k, andj = 1,

(4r − 1)i− 4r + 4, if 2 ≤ i ≤ k, andj = 2,

(4r − 1)i− 4r + 10, if 2 ≤ i ≤ k, andj = 3,

(4r − 1)i− 4r + 4j − 2, if 2 ≤ i ≤ k, and4 ≤ j ≤ r,

(4r − 1)i+ 4r − 4j + 5, if 2 ≤ i ≤ k, andr + 1 ≤ j ≤ 2r − 1,

(4r − 1)(i− 1), if i = k, andj = 2r.

And the induced vertex labeling in terms ofr is,

f v(vi,j) =



































































































2, if i = 1, andj = 1,

3j − 1, if i = 1, and2 ≤ j ≤ 4,

4j − 5, if i = 1, and5 ≤ j ≤ r,

8r − 4j + 6, if i = 1, andr + 2 ≤ j ≤ 2r − 1,

4, if i = 1, andj = 2r,

(4r − 1)i− 4r + 3, if 2 ≤ i ≤ k, andj = 1,

(4r − 1)i− 4r + 6, if 2 ≤ i ≤ k, andj = 2,

(4r − 1)i− 4r + 7, if 2 ≤ i ≤ k, andj = 3,
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f v(vi,j) =







































(4r − 1)i− 4r + 4j − 4, if 2 ≤ i ≤ k, and4 ≤ j ≤ r,

(4r − 1)i+ 4r − 4j + 7, if 2 ≤ i ≤ k, andr + 2 ≤ j ≤ 2r − 1,

(4r − 1)i− 4r + 5, if 2 ≤ i ≤ k, andj = 2r,

(4r − 1)k, if i = k, andj = r + 1.

We prove that the theorem is true whenr = 4, n = 8. Whenr = 4 the linear cyclic

snake is a linear octagonal snake withk, k ≥ 2 cycles ofC8.

Now, p = 7k + 1 andq = 8k andp+ q = 15k + 1.

Definef : E(kCn) → {1, 2, 3, · · · , 15k + 1} as follows,

f(ei,j) =















































































































































3j, if i = 1, and1 ≤ j ≤ 3,

13, if i = 1, andj = 4,

36− 4j, if i = 1, and5 ≤ j ≤ 6,

7, if i = 1, andj = 7,

1, if i = 1, andj = 8,

15i− 8, if 2 ≤ i ≤ k, andj = 1,

15i− 12, if 2 ≤ i ≤ k, andj = 2,

15i− 6, if 2 ≤ i ≤ k, andj = 3,

15i− 2, if 2 ≤ i ≤ k, andj = 4,

15i− 4j + 21, if 2 ≤ i ≤ k, and5 ≤ j ≤ 7,

15i− 15, if i = k, andj = 8.

It can be easily verified thatf is injective.

The induced vertex labels are as follows:

f v(vi,j) =







































2, if i = 1, andj = 1,

3j − 1, if i = 1, and2 ≤ j ≤ 4,

38− 4j, if i = 1, and6 ≤ j ≤ 7,

4, if i = 1, andj = 8,
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f v(vi,j) =



















































































15i− 13, if 2 ≤ i ≤ k, andj = 1,

15i− 10, if 2 ≤ i ≤ k, andj = 2,

15i− 9, if 2 ≤ i ≤ k, andj = 3,

15i− 4, if 2 ≤ i ≤ k, andj = 4,

15i− 4j + 23, if 2 ≤ i ≤ k, and6 ≤ j ≤ 7,

15i− 11, if 2 ≤ i ≤ k, andj = 8,

15k, if i = k, andj = 5.

Clearly it can be proved that the union of the set of edge labelsand the induced vertex

labels is{1, 2, 3, · · · , 15k + 1} as follows;

f(E) = {3, 6, 9, 13, 16, 12, 7, 1} ∪

{22, 18, 24, 28, 31, 27, 23, 15} ∪ · · · ,

{15k − 8, 15k − 12, 15k − 6, 15k − 2, 15k + 1,

15k − 3, 15k − 7, 15k − 15}.

f v(V ) = {2, 5, 8, 11, 14, 10, 4} ∪

{17, 20, 21, 26, 29, 25, 19} ∪ · · · ,

{15k − 13, 15k − 10, 15k − 9, 15k − 4, 15k − 1,

15k − 5, 15k − 11, 15k}.

f(E) ∪ f v(V ) = {1, 3, 6, 7, 9, 12, 13, 16} ∪ {2, 4, 5, 8, 10, 11, 14} ∪

{15, 18, 22, 23, 24, 27, 28, 31} ∪ {17, 19, 20, 21, 25, 26, 29} ∪ · · · ,

{15k − 15, 15k − 12, 15k − 8, 15k − 7, 15k − 6, 15k − 3, 15k − 2,

15k + 1} ∪ {15k − 13, 15k − 11, 15k − 10, 15k − 9, 15k − 5,

15k − 4, 15k − 1, 15k}.

= {1, 2, 3, 4, · · · , 29, 30, 31, · · · , 15k − 2, 15k − 1, 15k, 15k + 1}
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Thus the theorem is true whenr = 4.

Now we assume that the theorem is true forr − 1, r ≥ 5 (i.e., forn− 2, n ≥ 10).

Now, p = (n − 3)k + 1 = (2r − 3)k + 1 andq = (n − 2)k = (2r − 2)k andp + q =

(2n− 5)k + 1 = (4r − 5)k + 1.

The induction hypothesis is that the edge labeling,

f : E(kC2r−2) → {1, 2, 3, · · · , (4r − 5)k + 1}

defined as follows, is a Super Vertex Mean Labeling, wherer ≥ 5, n ≥ 10, n ≡ 0(mod 2)

andk ≥ 2.

f(ei,j) =















































































































































3j, if i = 1, and1 ≤ j ≤ 3,

4j − 3, if i = 1, and4 ≤ j ≤ r − 1,

8r − 4j − 4, if i = 1, andr ≤ j ≤ 2r − 4,

7, if i = 1, andj = 2r − 3,

1, if i = 1, andj = 2r − 2,

(4r − 5)i− 4r + 12, if 2 ≤ i ≤ k, andj = 1,

(4r − 5)i− 4r + 8, if 2 ≤ i ≤ k, andj = 2,

(4r − 5)i− 4r + 14, if 2 ≤ i ≤ k, andj = 3,

(4r − 5)i− 4r + 4j + 2, if 2 ≤ i ≤ k, and4 ≤ j ≤ r − 1,

(4r − 5)i+ 4r − 4j + 1, if 2 ≤ i ≤ k, andr ≤ j ≤ 2r − 3,

(4r − 5)(i− 1), if i = k, andj = 2r − 2.

And the induced vertex labeling is,

f v(vi,j) =







































2, if i = 1, andj = 1,

3j − 1, if i = 1, and2 ≤ j ≤ 4,

4j − 5, if i = 1, and5 ≤ j ≤ r − 1,

8r − 4j − 2, if i = 1, andr + 1 ≤ j ≤ 2r − 3,
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f v(vi,j) =



































































































4, if i = 1, andj = 2r − 2,

(4r − 5)i− 4r + 7, if 2 ≤ i ≤ k, andj = 1,

(4r − 5)i− 4r + 10, if 2 ≤ i ≤ k, andj = 2,

(4r − 5)i− 4r + 11, if 2 ≤ i ≤ k, andj = 3,

(4r − 5)i− 4r + 4j, if 2 ≤ i ≤ k, and4 ≤ j ≤ r − 1,

(4r − 5)i+ 4r − 4j + 3, if 2 ≤ i ≤ k, andr + 1 ≤ j ≤ 2r − 3,

(4r − 5)i− 4r + 9, if 2 ≤ i ≤ k, andj = 2r − 2,

(4r − 5)k, if i = k, andj = r.

Now we prove that the result is true for anyr. If we replacer with r + 1 in the above

mapping we get,

f(ei,j) =















































































































































3j, if i = 1, and1 ≤ j ≤ 3,

4j − 3, if i = 1, and4 ≤ j ≤ r,

8r − 4j + 4, if i = 1, andr + 1 ≤ j ≤ 2r − 2,

7, if i = 1, andj = 2r − 1,

1, if i = 1, andj = 2r,

(4r − 1)i− 4r + 8, if 2 ≤ i ≤ k, andj = 1,

(4r − 1)i− 4r + 4, if 2 ≤ i ≤ k, andj = 2,

(4r − 1)i− 4r + 10, if 2 ≤ i ≤ k, andj = 3,

(4r − 1)i− 4r + 4j − 2, if 2 ≤ i ≤ k, and4 ≤ j ≤ r,

(4r − 1)i+ 4r − 4j + 5, if 2 ≤ i ≤ k, andr + 1 ≤ j ≤ 2r − 1,

(4r − 1)(i− 1), if i = k, andj = 2r.
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And,

f v(vi,j) =



























































































































































2, if i = 1, andj = 1,

3j − 1, if i = 1, and2 ≤ j ≤ 4,

4j − 5, if i = 1, and5 ≤ j ≤ r,

8r − 4j + 6, if i = 1, andr + 2 ≤ j ≤ 2r − 1,

4, if i = 1, andj = 2r,

(4r − 1)i− 4r + 3, if 2 ≤ i ≤ k, andj = 1,

(4r − 1)i− 4r + 6, if 2 ≤ i ≤ k, andj = 2,

(4r − 1)i− 4r + 7, if 2 ≤ i ≤ k, andj = 3,

(4r − 1)i− 4r + 4j − 4, if 2 ≤ i ≤ k, and4 ≤ j ≤ r,

(4r − 1)i+ 4r − 4j + 7, if 2 ≤ i ≤ k, andr + 2 ≤ j ≤ 2r − 1,

(4r − 1)i− 4r + 5, if 2 ≤ i ≤ k, andj = 2r,

(4r − 1)k, if i = k, andj = r + 1.

This is equivalent to the original labeling in terms ofn, which is given in the beginning

of the proof, and it is clear thatf(E)∪f v(V ) = {1, 2, 3, · · · , (4r−1)k−1, (4r−1)k, (4r−

1)k + 1}.

Thus the theorem is proved by Mathematical Induction.

Example 4.2.10.Figure4.6 is an SVM - labeling of a linear cyclic snake2C12.

2

5 8 11 15 19

25

221814104 27 33 37 41 45

46

4238342928
6 9 13 17

21 30
26 32 36 40

44

47
43393531

2324
2016127

1

3

Figure 4.6: SVM - Labeling of a linear cyclic snake,2C12.
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4.2.6 LinearkCn, k ≥ 2 blocks ofCn, n ≥ 9 and n ≡ 1(mod 4)

Theorem 4.2.11.Let kCn be a linear cyclic snake withk, k ≥ 2 blocks ofCn, n ≥ 9 and

n ≡ 1(mod 4). ThenkCn is a Super Vertex Mean graph.

Proof. Let kCn be a cyclic snake withk, k ≥ 2 blocks ofCn, n ≥ 9 andn ≡ 1(mod 4).

Let n = 2r + 1, r ≥ 4, andr = 2s, s ≥ 2 so thatn = 4s+ 1.

Let V (kCn) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ n} and

E(kCn) = {ei,j = vi,jvi,j+1 & ei,n = vi,nvi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1}.

Now, p = (n− 1)k + 1 andq = nk andp+ q = (2n− 1)k + 1.

Definef : E(kCn) → {1, 2, 3, · · · , (2n− 1)k + 1} as follows,

f(ei,j) =











































































































































































n, if i = 1, andj = 1,

2j + n− 1, if i = 1, and2 ≤ j ≤ r + 1,

2j − n− 2, if i = 1, andr + 2 ≤ j ≤ n,

(2n− 1)i− n− 1, if 2 ≤ i ≤ k, andj = 1,

(2n− 1)i− n+ 2j − 2, if 2 ≤ i ≤ k, and2 ≤ j ≤ r − 3,

(2n− 1)i− n+ 2j − 1, if 2 ≤ i ≤ k, andr − 2 ≤ j ≤ r − 1,

(2n− 1)i− n+ 2j, if 2 ≤ i ≤ k, andr ≤ j ≤ r + 1,

(2n− 1)i− 8, if 2 ≤ i ≤ k, n 6= 9 andj = r + 2,

(2n− 1)i− 7, if 2 ≤ i ≤ k, n = 9 andj = r + 2,

(2n− 1)i− 2n+ 1, if 2 ≤ i ≤ k, andj = r + 3,

(2n− 1)i− 3n+ 2j − 3, if 2 ≤ i ≤ k, andr + 4 ≤ j ≤ n+ 1− s,

(2n− 1)i− 3n+ 2j − 2, if 2 ≤ i ≤ k, andn+ 2− s ≤ j ≤ n− 1,

(2n− 1)i− n, if 2 ≤ i ≤ k, andj = n.

And, the induced vertex labels are as follows:
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Wheni = 1, andn ≥ 9,

f v(vi,j) =







































n− 1, if j = 1,

2j + n− 2, if 2 ≤ j ≤ r,

n+ 1, if j = r + 2,

2j − 16, if r + 3 ≤ j ≤ n.

And when2 ≤ i ≤ k, andn = 9,

f v(vi,j) =



















































































17i− 13, if j = 1,

17i+ 3j − 14, if 2 ≤ j ≤ 4,

17i, if j = 5 andi = k,

17i− 3, if j = 6,

22, if j = 7,

19, if j = 8,

23, if j = 9.

And when2 ≤ i ≤ k, andn ≥ 13,

f v(vi,j) =































































































































(2n− 1)i− 3r − 1, if j = 1,

(2n− 1)i− n+ 2j − 3, if 2 ≤ j ≤ r − 3,

(2n− 1)i− n+ 2j − 2, if r − 2 ≤ j ≤ r − 1,

(2n− 1)i− 2, if j = r,

(2n− 1)i, if i = k, andj = r + 1,

(2n− 1)i− 3, if j = r + 2,

(2n− 1)i− n− 3, if j = r + 3,

(2n− 1)i− 3n+ 2j − 4, if r + 4 ≤ j ≤ n+ 1− s,

(2n− 1)i− 3n+ 2j − 3, if n+ 2− s ≤ j ≤ n− 1,

(2n− 1)i− n− 2, if j = n.
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We can easily prove the theorem by the technique of mathematical induction ons as in

the previous theorem. The remaining of the proof is left as anexercise.

Example 4.2.12.SVM Labeling of a linear cyclic snake,2C13 is given in Figure4.7.
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Figure 4.7: SVM - labeling of a linear2C13 snake.

4.2.7 LinearkCn, k ≥ 2 blocks ofCn, n ≥ 11 and n ≡ 3(mod 4)

Theorem 4.2.13.Let kCn be a linear cyclic snake withk, k ≥ 2 blocks ofCn, n ≥ 11 and

n ≡ 3(mod 4). ThenkCn is a Super Vertex Mean graph.

Proof. Let kCn be a cyclic snake withk, k ≥ 2 blocks ofCn, n ≥ 11 andn ≡ 3(mod 4).

Let n = 2r + 1, r ≥ 5, andr = 2s+ 1, s ≥ 2 so thatn = 4s+ 3.

Let V (kCn) = {vi,j; 1 ≤ i ≤ k, 1 ≤ j ≤ n} and

E(kCn) = {ei,j = vi,jvi,j+1 & ei,n = vi,nvi,1; 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1}.

Now, p = (n− 1)k + 1 andq = nk andp+ q = (2n− 1)k + 1.

73



Definef : E(kCn) → {1, 2, 3, · · · , (2n− 1)k + 1} as follows;

f(ei,j) =
























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




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


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


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
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


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

























4j − 1, if i = 1, and1 ≤ j ≤ r,

4n− 4j + 2, if i = 1, andr + 1 ≤ j ≤ 2r,

1, if i = 1, andj = n,

(2n− 1)i− 2n+ 2j + 7, if 2 ≤ i ≤ k, and1 ≤ j ≤ 3,

(2n− 1)i− 2n+ 4j + 1, if 2 ≤ i ≤ k, and4 ≤ j ≤ r − 1,

(2n− 1)i− 3r + 3j − 2, if 2 ≤ i ≤ k, andr ≤ j ≤ r + 1,

(2n− 1)i+ 2n− 4j + 2, if 2 ≤ i ≤ k, andr + 2 ≤ j ≤ 2r − 2,

(2n− 1)i− 2n+ 1, if 2 ≤ i ≤ k, andj = 2r − 1,

(2n− 1)i− 4n+ 2j + 7, if 2 ≤ i ≤ k, and2r ≤ j ≤ n.

And, the induced vertex labels are as follows;

f v(vi,j) =


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


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
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


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
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
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
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
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


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
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
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
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

















2, if i = 1, andj = 1,

4j − 3, if i = 1, and2 ≤ j ≤ r,

4n− 4j + 4, if i = 1, andr + 2 ≤ j ≤ n,

(2n− 1)i− 2n+ 4, if 2 ≤ i ≤ k, andj = 1,

(2n− 1)i− 2n+ 2j + 6, if 2 ≤ i ≤ k, and2 ≤ j ≤ 3,

(2n− 1)i− 2n+ 4j − 1, if 2 ≤ i ≤ k, and4 ≤ j ≤ r,

(2n− 1)i− 1, if 2 ≤ i ≤ k, andj = r + 2,

(2n− 1)i+ 2n− 4j + 4, if 2 ≤ i ≤ k, andr + 3 ≤ j ≤ 2r − 2,

(2n− 1)i− 2n+ 8, if 2 ≤ i ≤ k, andj = 2r − 1,

(2n− 1)i− 2n+ 3, if 2 ≤ i ≤ k, andj = 2r,

(2n− 1)i− 2n+ 6, if 2 ≤ i ≤ k, andj = 2r + 1,

(2n− 1)k, if i = k, andj = r + 1.

We can easily prove that the above labeling is an SVM labelingof kCn, wherek ≥ 2
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blocks ofCn, n ≥ 11 andn ≡ 3(mod 4), by using the technique of mathematical induction

ons, wheren = 4s+ 3. Thus the theorem.

Example 4.2.14.SVM - Labeling of a linear cyclic snake,2C15 is given in Figure4.8.
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Figure 4.8: SVM - labeling of a linear cyclic snake,2C15.

4.3 Conclusion

In this chapter, we have proved that all the linear cyclic snakes are Super Vertex Mean

graphs. In the case of Super Mean Labeling, the vertex analogue of SVM, it was easier to

obtain a general formula for linear cyclic snakes as well as other cyclic snakes represented

by the strings1, s2, s3, · · · , sk−2, where eachsi need not be equal. This is because when we

calculate the induced edge label for an edge, by finding the average of the labels of the two
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vertices which are the end points of that particular edge, weneed to consider only those two

vertices. Therefore the average remains the same as in the case of cycles.

But for Super Vertex Mean labeling, when we find the induced vertex labeling of the

connecting vertices of a cyclic snake we have to consider four edges that are incident on those

vertices to get the average. Thus it becomes pretty difficultto obtain a general formula for

cyclic snakes represented by the strings1, s2, s3, · · · , sk−2, where eachsi need not be equal.

Another possibility emerges is that we try to explore the SVM- labeling ofKC – snakes,

which is defined as a connecting graph in which each of thek many blocks is isomorphic

to a cycleCn for somen and the block - cut point graph is a path. As in the case ofkCn –

snakes, akC –snake too can be represented by a string of integers,s1, s2, · · · , s− k − 2. It

remains still an open problem to label akC –snake which has either equalsi or differentsi.
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Chapter 5

Edge Linked Cyclic Snake as SVM -

Graphs

In this chapter we have yet another type of cyclic snakes. This type is an edge analogue of

kCn snake. Whereas inkCn, each cycle is connected to the next by a means of a vertex, edge

linked cyclic snakes are those connected cycles by means of an edge. Here we reproduce the

definition and a short discussion on them, from [30] and examine the SVM - behaviour of

linear edge linked cyclic (EL(kCn)) snakes.

5.1 Edge Linked Cyclic (EL(kCn))Snakes

Definition 5.1.1. A connected graphG obtained fromk, k ≥ 2 copies of a cycleCn, where

n ≥ 4, by identifying an edge of(i + 1)th copy, called linki, to an edge of theith copy for

eachi, 1 ≤ i ≤ k−1, in such a way that consecutive links are not adjacent is called an edge

linked cyclic (EL(kCn)) snake.

5.1.1 Representations ofEL(kCn) - Snake

The way to construct an (EL(2Cn)) - snake is unique. Fork ≥ 3, a copy ofCn can be

attached inn− 3 ways to an (EL(k − 1Cn)) - snake to obtain an (EL(kCn)) - snake. LetG
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be and (EL(kCn)) snake. Consider a pathP of minimal length that contains all the links of

G. Clearly both ends ofP are links. Beginning from one of its extreme links, it is possible to

construct a strings′1, s
′

2, s
′

3, · · · , s
′

k−2 of k − 2 integers where theith integer,s′i on the string

is the number of edges that separates the link-i from the link (i + 1) of G on the pathP .

For eachi, 1 ≤ i ≤ k − 2, letuivi denote the linki of G on the pathP , so that the integers′i

becomes the length of thevi − ui+1 path onP . As there aren− 3 different ways to connect

the(i+ 1)th copy ofCn to theith copy,s′i is taken fromS ′

n = {1, 2, 3, · · · , n− 3}.

Until now, this representation is not unique, because it depends on the extreme ofP taken

and there are exactly two such paths asP . But, the four strings obtained for both ends of

each of the two paths are the same, in the sense that one is obtained from the other by means

of one of the following operations;

1. reversing the string

2. replacing eachs′i on the string byn− 2− s′i

3. replacing eachs′i on the string byn− 2− s′i and reversing it.

Thus without loss of generality we assume that any (EL(kCn)) - snake is uniquely

represented by a string. This is illustrated by the following example.

Example 5.1.2.AnEL(5C7) - snake represented by its unique string in Figure 5.1.

Consider graphG ∼= EL(5C7) - snake of figure 4.1. Consider the path

P1 : abcdefghijklmn of minimal length that contains all the links ofG. It is clear that

ab, de, hi, andmn are links ofG. Beginning from the linkab, we observe that two edges

separate link1 (ab) from link 2 (de), thus we haves′1 = 2. In a similar way the integers

s′2 = 3, s′3 = 4 can be obtained. Hence2, 3, 4 is a string attached toG. If we had

constructed the string beginning from the link4 (nm), the string would have been4, 3, 2.

Similarly 3, 2, 1 and 1, 2, 3 would have been the strings, had we constructed the string

starting from link (ba) or link (mn) respectively using the pathP2 : barsedtihnm. It is easy

to observe that one string can be obtained from the other by means of any one of the
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a

b

r s

e

d

f g

tc

h

i

j

k

l

mn

Figure 5.1: An EL(5C7) - snake represented by its unique string.

operations mentioned earlier, in the construction of the string. Therefore these four strings

are considered to be the same and we use any one of them to representG.

LetG be anEL(kCn) - snake represented by a strings′1, s
′

2, s
′

3, · · · , s
′

k−2 of k−2 integers.

ThenG is said to belinear if s′i =
⌊

n
2

⌋

− 1 or
⌈

n
2

⌉

− 1, for eachi.

Remark 5.1.3. All EL(kCn) -snakes in this chapter are constructed keeping the following

aspects in mind, whereei,j or vi,j represent thejth edge or vertex of theith cycle inEL(kCn)

respectively,1 ≤ i ≤ k, and1 ≤ j ≤ n;

1. When n is odd

• v
i,bn

2
c or dn

2
e = vi+1,1, where

⌊

n
2

⌋

or
⌈

n
2

⌉

is odd.

• v
i,bn

2
c+1 or dn

2
e+1 = vi+1,n, where

⌊

n
2

⌋

or
⌈

n
2

⌉

is odd.

• e
i,bn

2
c or dn

2
e = ei+1,n, where

⌊

n
2

⌋

or
⌈

n
2

⌉

is odd.

2. When n is even

• vi,n
2
= vi+1,1.

• vi,n
2
+1 = vi+1,n.

• ei,n
2
= ei+1,n.
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3. For all n.

• p = (n− 2)k + 2, q = (n− 1)k + 1 andp+ q = (2n− 3)k + 3.

5.2 Linear EL(kCn) - snakes and their SVM - Behaviour

From the above discussion it is vividly clear that there is only oneEL(kC4) - snake,

the ladderPk+1 × P2, which is an SVM - graph. For the sake of completeness, we begin

discussingEL(kC4) - snakes.

5.2.1 EL(kC4) - Snake

Theorem 5.2.1.EL(kC4) - snake is an SVM graph.

Proof. LetG be anEL(kC4) - snake∼= Pk+1×P2. Clearly the order ofG is p = 2k+2 and

the size ofG is q = 3k + 1.

Definef : E(EL(kC4)) → {1, 2, 3, ..., 5k + 3} as follows:

f(ei,j) =



















































































2j + 1, if i = 1, and1 ≤ j ≤ 3,

1, if i = 1, andj = 4,

5i− 1, if 2 ≤ i ≤ k − 1, k is odd andj = 1,

5i+ 2j − 4, if 2 ≤ i ≤ k − 1, k is odd and2 ≤ j ≤ 3,

5i, if 2 ≤ i ≤ k − 1, k is even andj = 1,

5i+ 3j − 7, if 2 ≤ i ≤ k − 1, k is even and2 ≤ j ≤ 3,

5k + 2j − 3, if i = k, 1 ≤ j ≤ 3.
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The induced vertex labels are found to be as follows:

f v(vi,j) =























































2, if i = 1, andj = 1,

5i+ 2j + 3, if 1 ≤ i ≤ k − 1, k is even and2 ≤ j ≤ 3,

4, if i = 1, andj = 4,

5i+ 2j + 2, if 1 ≤ i ≤ k − 1, k is odd and2 ≤ j ≤ 3,

5k + 2j − 4, if i = k, 2 ≤ j ≤ 3.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective

mapping and the set of edge labels and induced vertex labels is {1, 2, 3, ..., 5k + 3}.

ThereforeEL(kC4) snake is SVM.

Example 5.2.2.Super vertex-mean labeling of aEL(5C4) - snake is shown in Figure5.2.

3 9 15 19 24

7 12 17 22 28

2620141051

Figure 5.2: EL(5C4) - snake is SVM graph.

5.2.2 LinearEL(kC5) - Snake

Theorem 5.2.3.A LinearEL(kC5) - snake is SVM.

Proof. LetEL(kC5) - snake be linear.

Herep = 3k + 2, q = 4k + 1 andp+ q = 7k + 3.
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Definef : E(EL(kC5)) → {1, 2, 3, · · · , 7k + 3} as follows;

f(ei,j) =















































































































































3, if i = 1, andj = 1,

7, if i = 1, andj = 2,

8, if i = 1, andj = 3,

6, if i = 1, andj = 4,

1, if i = 1, andj = 5,

11, if i = 2, andj = 1,

7i− 4, if 3 ≤ i ≤ k, andj = 1,

7i− 1, if 2 ≤ i ≤ k − 1, andj = 2,

7i, if 2 ≤ i ≤ k − 1, andj = 3,

7i+ 2, if 2 ≤ i ≤ k − 1, andj = 4,

7k + 2j − 5, if i = k, and2 ≤ j ≤ 4.

The induced vertex labels are found to be as follows:

f v(vi,j) =



















































































2, if i = 1, andj = 1,

5, if i = 1, andj = 2,

9, if i = 1, andj = 3,

10, if i = 1, andj = 4,

4, if i = 1, andj = 5,

7i+ 3j − 8, if 2 ≤ i ≤ k − 1, and2 ≤ j ≤ 4,

7k + 2j − 6, if i = k, and2 ≤ j ≤ 4.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., 7k + 3}. Therefore, linear

EL(kC5) - snake is SVM.

Example 5.2.4.Figure5.3 is an SVM labeling of a linearEL(4C5) - snake.
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3 7 11 13 17 20 24 27

1 8 14 21 29

6 16 23 31

Figure 5.3: SVM labeling of a linear EL(4C5) - snake.

5.2.3 LinearEL(kC6) - Snake

Theorem 5.2.5.LinearEL(kC6) - snake is a Super Vertex Mean Graph.

Proof. LetEL(kC6) be a linear edge linked cyclic snake. Thenp+ q = 9k + 3.

Definef : E(EL(kC6)) → {1, 2, 3, · · · , 9k + 3} as follows;

f(ei,j) =







































































2j + 1, if i = 1, and1 ≤ j ≤ 5,

1, if i = 1, andj = 6,

9i+ 2j − 7, if 2 ≤ i ≤ k − 1, and1 ≤ j ≤ 2,

9i− 2, if 2 ≤ i ≤ k − 1, andj = 3,

9i+ 3j − 13, if 2 ≤ i ≤ k − 1, and4 ≤ j ≤ 5,

9k + 2j − 7, if i = k, and1 ≤ j ≤ 5.

The induced vertex labels are found to be as follows:

f v(vi,j) =



















































































2j, if i = 1, and1 ≤ j ≤ 2,

8, if i = 1, andj = 3,

20− 2j, if i = 1, and4 ≤ j ≤ 5,

6, if i = 1, andj = 6,

9i+ 4j − 12, if 2 ≤ i ≤ k − 1, and2 ≤ j ≤ 3,

9i− 2j + 11, if 2 ≤ i ≤ k − 1, and4 ≤ j ≤ 5,

9k + 2j − 8, if i = k, and2 ≤ j ≤ 5.
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It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., 9k + 3}. Therefore, linear

EL(kC6) - snake is SVM.

Example 5.2.6.Figure5.4 shows SVM - labeling of a linearEL(3C6).

3 5

7

11 9 20

13 15 22 24

16 26

17 30 28

1

Figure 5.4: SVM - labeling of a linear EL(3C6).

5.2.4 LinearEL(kC7) - Snake

Theorem 5.2.7.LinearEL(kC7)- snake is a Super Vertex Mean Graph.

Proof. LetEL(kC7) be a linear.p+ q = 11k + 3.

Definef : E(EL(kC7)) → {1, 2, 3, · · · , 11k + 3} as follows;

f(ei,j) =







































































3, if i = 1, andj = 1,

7, if i = 1, andj = 2,

19− 2j, if i = 1, and3 ≤ j ≤ 5,

6, if i = 1, andj = 6,

1, if i = 1, andj = 7,

11i+ 2j − 9, if 2 ≤ i ≤ k, and1 ≤ j ≤ 2,
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f(ei,j) =



























11i− 2j + 8, if 2 ≤ i ≤ k − 1, and3 ≤ j ≤ 6,

11i− 2j + 9, if i = k, and3 ≤ j ≤ 4,

11i− 2j + 8, if i = k, and5 ≤ j ≤ 6.

The induced vertex labels are found to be as follows:

f v(vi,j) =



























































































































































2, if i = 1, andj = 1,

5, if i = 1, andj = 2,

6 + 2j, if i = 1, and3 ≤ j ≤ 4,

20− 2j, if i = 1, and5 ≤ j ≤ 6,

4, if i = 1, andj = 7,

11i− 6, if 2 ≤ i ≤ k − 1, andj = 2,

11i+ 2j − 5, if 2 ≤ i ≤ k − 1, and3 ≤ j ≤ 4,

11i− 2j + 9, if 2 ≤ i ≤ k − 1, and5 ≤ j ≤ 6,

11k − 6, if i = k, andj = 2,

11k − 1, if i = k, andj = 3,

11k − 2j + 10, if i = k, and4 ≤ j ≤ 5,

11k − 3, if i = k, andj = 6.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., 11k+3}. Therefore linear

EL(kC7) - snake is SVM.

Example 5.2.8.Given in Figure5.5 is an SVM - labeling of a linearEL(3C7).

5.2.5 LinearEL(kC8) - Snake

Theorem 5.2.9.LinearEL(kC8) is a Super Vertex Mean graph.

85



73

1

9
11 18

15 17

13 24

20
22 29

31
34

36

28
26

6

Figure 5.5: SVM - labeling of a linear EL(3C7).

Proof. LetEL(kC8) be a linear edge linked cyclic snake. Thenp+ q = 13k + 3.

Definef : E(EL(kC8)) → {1, 2, 3, · · · , 13k + 3} as follows;

f(ei,j) =



































































































2j + 1, if i = 1, and1 ≤ j ≤ 3,

5 + j, if i = 1, and4 ≤ j ≤ 5,

2j + 1, if i = 1, and6 ≤ j ≤ 7,

1, if i = 1, andj = 8,

13i+ 2j − 11, if 2 ≤ i ≤ k − 1, and1 ≤ j ≤ 3,

13i+ j − 8, if 2 ≤ i ≤ k − 1, and4 ≤ j ≤ 5,

13i+ 2j − 12, if 2 ≤ i ≤ k − 1, and6 ≤ j ≤ 7,

13k + 2j − 11, if i = k, and1 ≤ j ≤ 7.

The induced vertex labels are as follows:

f v(vi,j) =







































2j, if i = 1, and1 ≤ j ≤ 3,

5j − 9, if i = 1, and4 ≤ j ≤ 5,

2j, if i = 1, and6 ≤ j ≤ 7,

8, if i = 1, andj = 8,
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f v(vi,j) =







































13i+ 2j − 12, if 2 ≤ i ≤ k − 1, and2 ≤ j ≤ 3,

13i+ 5j − 22, if 2 ≤ i ≤ k − 1, and4 ≤ j ≤ 5,

13i+ 2j − 13, if 2 ≤ i ≤ k − 1, and6 ≤ j ≤ 7,

13k + 2j − 12, if i = k, and2 ≤ j ≤ 7.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., 13k+3}. Therefore linear

EL(kC8) - snake is SVM.

Example 5.2.10.Figure5.6 gives SVM - labeling of a linearEL(4C8).

7

5

3

1

15

13

10

9

17

19

21

22

2328

26

30

32

34

35

3641

39

43

45

47

49

51

53

55

Figure 5.6: SVM - labeling of a linear EL(4C8).

5.2.6 LinearEL(kC9) - Snake

Theorem 5.2.11.A linearEL(kC9) is SVM.

Proof. LetEL(kC9) be a linear edge linked cyclic snake. Thenp+ q = 15k + 3.

Definef : E(EL(kC9)) → {1, 2, 3, · · · , 15k + 3} as follows;
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f(ei,j) =



























































































































































2j − 1, if i = 1, and1 ≤ j ≤ 2,

6, if i = 1, andj = 3,

2j + 2, if i = 1, and4 ≤ j ≤ 5,

29− 2j, if i = 1, and6 ≤ j ≤ 7,

11, if i = 1, andj = 8,

7, if i = 1, andj = 9,

15i+ 2j − 13, if 2 ≤ i ≤ k − 1, and1 ≤ j ≤ 5,

15i− 2j + 14, if 2 ≤ i ≤ k − 1, and6 ≤ j ≤ 7,

15i− 4, if 2 ≤ i ≤ k − 1, andj = 8,

15k + 2j − 13, if i = k, and1 ≤ j ≤ 4,

15k − 2j + 13, if i = k, and5 ≤ j ≤ 6,

15k − 2j + 12, if i = k, and7 ≤ j ≤ 8.

The induced vertex labels are as follows:

f v(vi,j) =



































































































4, if i = 1, andj = 1,

3j − 4, if i = 1, and2 ≤ j ≤ 4,

4j − 6, if i = 1, and5 ≤ j ≤ 6,

37− 3j, if i = 1, and7 ≤ j ≤ 8,

9, if i = 1, andj = 9,

15i+ 2j − 14, if 2 ≤ i ≤ k − 1, and2 ≤ j ≤ 4,

15i+ 4j − 21, if 2 ≤ i ≤ k − 1, and5 ≤ j ≤ 6,

15i− 3j + 22, if 2 ≤ i ≤ k − 1, and7 ≤ j ≤ 8,
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f v(vi,j) =



























15k + 2j − 14, if i = k, and2 ≤ j ≤ 4,

15k + 3j − 16, if i = k, and5 ≤ j ≤ 6,

15k − 3j + 21, if i = k, and7 ≤ j ≤ 8.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., 13k+3}. Therefore linear

EL(kC9) - snake is SVM.

Example 5.2.12.Figure5.7 shows SVM - labeling of a linearEL(3C9).
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63
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48
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41

Figure 5.7: SVM - labeling of a linear EL(3C9).

5.2.7 LinearEL(kC10) - Snake

Theorem 5.2.13.A linearEL(kC10) is SVM.

Proof. LetEL(kC10) be a linear edge linked cyclic snake. Thenp+ q = 17k + 3.

Definef : E(EL(kC10)) → {1, 2, 3, · · · , 17k + 3} as follows;
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f(ei,j) =















































































































































2j + 1, if i = 1, and1 ≤ j ≤ 2,

2j + 2, if i = 1, and3 ≤ j ≤ 5,

31− 2j, if i = 1, and6 ≤ j ≤ 8,

11, if i = 1, andj = 9,

1, if i = 1, andj = 10,

17i+ 2j − 15, if 2 ≤ i ≤ k − 1, and1 ≤ j ≤ 5,

17i− 2j + 14, if 2 ≤ i ≤ k − 1, and6 ≤ j ≤ 8,

17i− 6, if 2 ≤ i ≤ k − 1, andj = 9,

17k + 2j − 15, if i = k, and1 ≤ j ≤ 5,

17k − 2j + 15, if i = k, and6 ≤ j ≤ 7,

17k − 2j + 14, if i = k, and8 ≤ j ≤ 9.

The induced vertex labels are as follows:

f v(vi,j) =















































































































































2j, if i = 1, and1 ≤ j ≤ 2,

2j + 1, if i = 1, and3 ≤ j ≤ 4,

6j − 16, if i = 1, and5 ≤ j ≤ 6,

32− 2j, if i = 1, and7 ≤ j ≤ 8,

13, if i = 1, andj = 9,

6, if i = 1, andj = 10,

17i− 12, if 2 ≤ i ≤ k − 1, andj = 2,

17i+ 2j − 16, if 2 ≤ i ≤ k − 1, and3 ≤ j ≤ 4,

17i+ 6j − 33, if 2 ≤ i ≤ k − 1, and5 ≤ j ≤ 6,

17i− 2j + 15, if 2 ≤ i ≤ k − 1, and7 ≤ j ≤ 8,

17i− 4, if 2 ≤ i ≤ k − 1, andj = 9,
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f v(vi,j) =























































17k − 12, if i = k, andj = 2,

17k + 2j − 16, if i = k, and3 ≤ j ≤ 4,

17k − 6, if i = k, andj = 5,

17k + 3j − 19, if i = k, and6 ≤ j ≤ 7,

17k − 3j + 24, if i = k, and8 ≤ j ≤ 9.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., 17k+3}. Therefore linear

EL(kC10) - snake is SVM.

Example 5.2.14.Figure5.8 shows SVM - labeling of a linearEL(3C10).
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Figure 5.8: SVM - labeling of a linear EL(3C10).

5.2.8 LinearEL(kC11) - Snake

Theorem 5.2.15.A linearEL(kC11) is SVM.

Proof. LetEL(kC11) be a linear edge linked cyclic snake. Thenp+ q = 19k + 3.
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Definef : E(EL(kC11)) → {1, 2, 3, · · · , 19k + 3} as follows;

f(ei,j) =











































































































































































2j − 1, if i = 1, and1 ≤ j ≤ 2,

4j − 6, if i = 1, and3 ≤ j ≤ 4,

14, if i = 1, andj = 5,

33− 2j, if i = 1, and6 ≤ j ≤ 8,

31− 2j, if i = 1, and9 ≤ j ≤ 10,

7, if i = 1, andj = 11,

19i+ 2j − 17, if 2 ≤ i ≤ k − 1, and1 ≤ j ≤ 4,

19i− 5, if 2 ≤ i ≤ k − 1, andj = 5,

19i− 2j + 14, if 2 ≤ i ≤ k − 1, and 6 ≤ j ≤ 8,

19i− 2j + 12, if 2 ≤ i ≤ k − 1, and 9 ≤ j ≤ 10,

19k + 2j − 17, if i = k, and1 ≤ j ≤ 4,

19k − 2j + 13, if i = k, and5 ≤ j ≤ 7,

19k − 2j + 12, if i = k, and8 ≤ j ≤ 10.

The induced vertex labels are as follows:

f v(vi,j) =



































































































6− 2j, if i = 1, and1 ≤ j ≤ 2,

3j − 4, if i = 1, and3 ≤ j ≤ 4,

16, if i = 1, andj = 5,

34− 2j, if i = 1, and6 ≤ j ≤ 8,

42− 3j, if i = 1, and9 ≤ j ≤ 10,

9, if i = 1, andj = 11,

19i+ 2j − 18, if 2 ≤ i ≤ k − 1, and2 ≤ j ≤ 4,

19i− 3, if 2 ≤ i ≤ k − 1, andj = 5,
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f v(vi,j) =







































































19i− 2j + 15, if 2 ≤ i ≤ k − 1, and 6 ≤ j ≤ 8,

19i− 3j + 23, if 2 ≤ i ≤ k − 1, and 9 ≤ j ≤ 10,

19k + 2j − 18, if i = k, and2 ≤ j ≤ 4,

19k − 3, if i = k, andj = 5,

19k − 2j + 14, if i = k, and6 ≤ j ≤ 8,

19k − 2j + 13, if i = k, and9 ≤ j ≤ 10.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., 19k+3}. Therefore linear

EL(kC11) snake is SVM.

Example 5.2.16.Figure5.9 gives SVM - labeling of a linearEL(3C11).
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4644
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Figure 5.9: SVM - labeling of a linear EL(3C11).

5.3 Linear Edge Linked Snakes of Higher Orders

5.3.1 LinearEL(kCn) - Snake,n ≡ 0(mod 12) and n ≥ 12

Theorem 5.3.1.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 0(mod 12)

andn ≥ 12. ThenEL(kCn) is SVM.
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Proof. LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 0(mod 12) andn ≥ 12

. We know thatp+ q = (2n− 3)k + 3.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =







































































n− 2j − 1, if 1 ≤ j ≤ n
2
− 6,

2j − n+ 11, if n
2
− 5 ≤ j ≤ n

2
− 3,

2j − n+ 12, if n
2
− 2 ≤ j ≤ n

2
− 1,

n+ 2, if j = n
2
,

3n− 2j + 1, if n
2
+ 1 ≤ j ≤ n− 2,

3n− 2j − 1, if n− 1 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =























































(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n
2
− 1,

(2n− 3)i− n+ 5, if j = n
2
,

(2n− 3)i+ n− 2j + 4, if n
2
+ 1 ≤ j ≤ 5

6
n− 1,

(2n− 3)i+ n− 2j + 3, if 5
6
n ≤ j ≤ n− 2,

(2n− 3)i− n+ 4, if j = n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n
2
− 1,

(2n− 3)i+ n− 2j + 3, if n
2
≤ j ≤ 3

4
n− 1,

(2n− 3)i+ n− 2j + 2, if 3
4
n ≤ j ≤ n− 1.

The induced vertex labels are as follows:

94



Case 1b: Fori = 1

f v(vi,j) =



































































































n− 2j, if 1 ≤ j ≤ n
2
− 6,

6, if j = n
2
− 5,

2j − n+ 10, if n
2
− 4 ≤ j ≤ n

2
− 3,

2j − n+ 11, if n
2
− 2 ≤ j ≤ n

2
− 1,

n+ 4, if j = n
2
,

3n− 2j + 2, if n
2
+ 1 ≤ j ≤ n− 2,

n+ 3, if j = n− 1,

n, if j = n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n
2
− 1,

(2n− 3)i− 2
3
n+ 4, if j = n

2
,

(2n− 3)i+ n− 2j + 5, if n
2
+ 1 ≤ j ≤ 5

6
n,

(2n− 3)i+ n− 2j + 4, if 5
6
n+ 1 ≤ j ≤ n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n
2
− 1,

(2n− 3)i− n
2
+ 3, if j = n

2
,

(2n− 3)i+ n− 2j + 4, if n
2
+ 1 ≤ j ≤ 3

4
n,

(2n− 3)i+ n− 2j + 3, if 3
4
n+ 1 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 0(mod 12) andn ≥ 12, is SVM.
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5.3.2 LinearEL(kCn) - Snake,n ≡ 1(mod 12) and n ≥ 13

Theorem 5.3.2.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 1(mod 12)

andn ≥ 13. Then EL(kCn) is SVM.

Proof. LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 1(mod 12) andn ≥ 13

. Thenp+ q = (2n− 3)k + 3.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =



















































































n− 2j, if 1 ≤ j ≤ dn
2
e − 7,

7, if j = dn
2
e − 6,

1, if j = dn
2
e − 5,

3j − 3dn
2
e+ 15, if dn

2
e − 4 ≤ j ≤ dn

2
e − 1,

n+ 3, if j = dn
2
e,

3n− 2j + 2, if dn
2
e+ 1 ≤ j ≤ n− 2,

3n− 2j, if n− 1 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =























































(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ dn
2
e − 1,

(2n− 3)i− n+ 6, if j = dn
2
e,

(2n− 3)i+ n− 2j + 5, if dn
2
e+ 1 ≤ j ≤ bn

3
c+ dn

2
e − 1,

(2n− 3)i+ n− 2j + 4, if bn
3
c+ dn

2
e ≤ j ≤ n− 2,

(2n− 3)i− n+ 5, if j = n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ dn
2
e − 1,

(2n− 3)i+ n− 2j + 4, if dn
2
e ≤ j ≤ 1

2
(n+ dn

2
e)− 1,

(2n− 3)i+ n− 2j + 3, if 1
2
(n+ dn

2
e) ≤ j ≤ n− 1.
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The induced vertex labels are as follows:

Case 1b: Fori = 1

f v(vi,j) =



















































































n− 2j + 1, if 1 ≤ j ≤ dn
2
e − 7,

10, if j = dn
2
e − 6,

4, if j = dn
2
e − 5,

3j − 3dn
2
e+ 14, if dn

2
e − 4 ≤ j ≤ dn

2
e − 1,

n+ 5, if j = dn
2
e,

3n− 2j + 3, if dn
2
e+ 1 ≤ j ≤ n− 2,

4n− 3j + 1, if n− 1 ≤ j ≤ n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ dn
2
e − 1,

(2n− 3)i− 2bn
3
c+ 4, if j = dn

2
e,

(2n− 3)i+ n− 2j + 6, if dn
2
e+ 1 ≤ j ≤ bn

3
c+ dn

2
e,

(2n− 3)i+ n− 2j + 5, if bn
3
c+ dn

2
e+ 1 ≤ j ≤ n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ dn
2
e − 1,

(2n− 3)i− dn
2
e+ 4, if j = dn

2
e,

(2n− 3)i+ n− 2j + 5, if dn
2
e+ 1 ≤ j ≤ 1

2
(n+ dn

2
e),

(2n− 3)i+ n− 2j + 4, if 1
2
(n+ dn

2
e) + 1 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 1(mod 12) andn ≥ 13, is SVM.
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5.3.3 LinearEL(kCn) - Snake,n ≡ 2 or 8(mod 12) and n ≥ 14

Theorem 5.3.3. Let EL(kCn) be a linear edge linked cyclic snake, wheren ≡ 2 or

8(mod 12) andn ≥ 14. Then EL(kCn) is SVM.

Proof. Let EL(kCn) be a linear edge linked cyclic snake, wheren ≡ 2 or 8(mod 12) and

n ≥ 14. Thenp+ q = (2n− 3)k + 3.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =







































2j + 1, if 1 ≤ j ≤ n
2
,

2j, if n
2
+ 1 ≤ j ≤ b2n

3
c,

2j + 1, if b2n
3
c+ 1 ≤ j ≤ n− 1,

1, if j = n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =







































(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n
2
− 1,

(2n− 3)i− n+ 4, if j = n
2
,

(2n− 3)i− 2n+ 2j + 3, if n
2
+ 1 ≤ j ≤ b2n

3
c,

(2n− 3)i− 2n+ 2j + 4, if b2n
3
c+ 1 ≤ j ≤ n− 1.

Case 3a: Fori = k

f(ei,j) =

{

(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n− 1.

The induced vertex labels are as follows:
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Case 1b: Fori = 1

f v(vi,j) =







































































2j, if 1 ≤ j ≤ n
2
− 1,

2b2n
3
c+ 1, if j = n

2
,

2n, if j = n
2
+ 1,

2j − 1, if n
2
+ 2 ≤ j ≤ b2n

3
c,

2j, if b2n
3
c+ 1 ≤ j ≤ n− 1,

n, if j = n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =























































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n
2
− 1,

(2n− 3)i− 2n+ 2b2n
3
c+ 4, if j = n

2
,

(2n− 3)i+ 3, if j = n
2
+ 1,

(2n− 3)i− 2n+ 2j + 2, if n
2
+ 2 ≤ j ≤ b2n

3
c,

(2n− 3)i− 2n+ 2j + 3, if b2n
3
c+ 1 ≤ j ≤ n− 1.

Case 3b: Fori = k

f v(vi,j) =

{

(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 2 or 8(mod 12) andn ≥ 14, is SVM.

5.3.4 LinearEL(kCn) - Snake,n ≡ 3(mod 12) and n ≥ 15

Theorem 5.3.4.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 3(mod 12)

andn ≥ 15. Then EL(kCn) is SVM.

Proof. Let EL(kCn) be a linear edge linked cyclic snake, wheren ≡ 3(mod 12) andn ≥ 15.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;
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Case 1a: Fori = 1

f(ei,j) =



















































































n− 2j − 2, if 1 ≤ j ≤ bn
2
c − 7,

7, if j = bn
2
c − 6,

1, if j = bn
2
c − 5,

3j − 3bn
2
c+ 15, if bn

2
c − 4 ≤ j ≤ bn

2
c − 1,

n+ 3, if j = bn
2
c,

3n− 2j, if bn
2
c+ 1 ≤ j ≤ n− 3,

3n− 2j − 2, if n− 2 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =







































(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ bn
2
c − 1,

(2n− 3)i− n+ 6, if j = bn
2
c,

(2n− 3)i+ n− 2j + 3, if bn
2
c+ 1 ≤ j ≤ n

3
+ bn

2
c − 1,

(2n− 3)i+ n− 2j + 2, if n
3
+ bn

2
c ≤ j ≤ n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ bn
2
c − 1,

(2n− 3)i+ n− 2j + 2, if bn
2
c ≤ j ≤ 1

2
(n+ bn

2
c)− 1,

(2n− 3)i+ n− 2j + 1, if 1
2
(n+ bn

2
c) ≤ j ≤ n− 1.

The induced vertex labels are as follows:
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Case 1b: Fori = 1

f v(vi,j) =



































































































n− 2j + 1, if 1 ≤ j ≤ bn
2
c − 7,

10, if j = bn
2
c − 6,

4, if j = bn
2
c − 5,

3j − 3bn
2
c+ 14, if bn

2
c − 4 ≤ j ≤ bn

2
c − 1,

n+ 5, if j = bn
2
c,

3n− 2j + 1, if bn
2
c+ 1 ≤ j ≤ n− 3,

n+ 4, if j = n− 2,

3n− 2j − 1, if n− 1 ≤ j ≤ n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =























































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ bn
2
c − 1,

(2n− 3)i− 2n
3
+ 4, if j = bn

2
c,

(2n− 3)i+ n− 2j + 4, if bn
2
c+ 1 ≤ j ≤ n

3
+ bn

2
c,

(2n− 3)i+ n− 2j + 3, if n
3
+ bn

2
c+ 1 ≤ j ≤ n− 2,

(2n− 3)i− n+ 4, if j = n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ bn
2
c − 1,

(2n− 3)i− bn
2
c+ 2, if j = bn

2
c,

(2n− 3)i+ n− 2j + 3, if bn
2
c+ 1 ≤ j ≤ 1

2
(n+ bn

2
c),

(2n− 3)i+ n− 2j + 2, if 1
2
(n+ bn

2
c) + 1 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 3(mod 12) andn ≥ 15, is SVM.
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5.3.5 LinearEL(kCn) - Snake,n ≡ 4(mod 12) and n ≥ 16

Theorem 5.3.5.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 4(mod 12)

andn ≥ 16. Then EL(kCn) is SVM.

Proof. LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 4(mod 12) andn ≥ 16.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =







































































n− 2j − 1, if 1 ≤ j ≤ n
2
− 6,

2j − n+ 11, if n
2
− 5 ≤ j ≤ n

2
− 3,

2j − n+ 12, if n
2
− 2 ≤ j ≤ n

2
− 1,

n+ 2, if j = n
2
,

3n− 2j + 1, if n
2
+ 1 ≤ j ≤ n− 2,

3n− 2j − 1, if n− 1 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =























































(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n
2
− 1,

(2n− 3)i− n+ 7, if j = n
2
,

(2n− 3)i+ n− 2j + 4, if n
2
+ 1 ≤ j ≤ n− 1

2
(bn

3
c+ 3),

(2n− 3)i+ n− 2j + 3, if n− 1
2
(bn

3
c+ 1) ≤ j ≤ n− 3,

(2n− 3)i+ n− 2j + 2, if n− 2 ≤ j ≤ n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n
2
− 1,

(2n− 3)i+ n− 2j + 3, if n
2
≤ j ≤ 3

4
n− 1,

(2n− 3)i+ n− 2j + 2, if 3
4
n ≤ j ≤ n− 1.

The induced vertex labels are as follows:
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Case 1b: Fori = 1

f v(vi,j) =



































































































n− 2j, if 1 ≤ j ≤ n
2
− 6,

6, if j = n
2
− 5,

2j − n+ 10, if n
2
− 4 ≤ j ≤ n

2
− 3,

2j − n+ 11, if n
2
− 2 ≤ j ≤ n

2
− 1,

n+ 4, if j = n
2
,

3n− 2j + 2, if n
2
+ 1 ≤ j ≤ n− 2,

n+ 3, if j = n− 1,

n, if j = n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =























































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n
2
− 1,

(2n− 3)i− n+ bn
3
c+ 5, if j = n

2
,

(2n− 3)i+ n− 2j + 5, if n
2
+ 1 ≤ j ≤ n− 1

2
(bn

3
c+ 1),

(2n− 3)i+ n− 2j + 4, if n− 1
2
(bn

3
c − 1) ≤ j ≤ n− 2,

(2n− 3)i− n+ 5, if j = n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n
2
− 1,

(2n− 3)i− n
2
+ 3, if j = n

2
,

(2n− 3)i+ n− 2j + 4, if n
2
+ 1 ≤ j ≤ 3

4
n,

(2n− 3)i+ n− 2j + 3, if 3
4
n+ 1 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 4(mod 12) andn ≥ 16, is SVM.
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5.3.6 LinearEL(kCn) - Snake,n ≡ 5(mod 12) and n ≥ 17

Theorem 5.3.6.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 5(mod 12)

andn ≥ 17. ThenEL(kCn) is SVM.

Proof. LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 5(mod 12) andn ≥ 17.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =



















































































n− 2j − 2, if 1 ≤ j ≤ bn
2
c − 7,

7, if j = bn
2
c − 6,

1, if j = bn
2
c − 5,

3j − 3bn
2
c+ 15, if bn

2
c − 4 ≤ j ≤ bn

2
c − 1,

n+ 3, if j = bn
2
c,

3n− 2j, if bn
2
c+ 1 ≤ j ≤ n− 3,

3n− 2j − 2, if n− 2 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =







































(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ bn
2
c,

(2n− 3)i+ n− 2j + 3, if bn
2
c+ 1 ≤ j ≤ 10b n

12
c+ 3,

(2n− 3)i+ n− 2j + 2, if 10b n
12
c+ 4 ≤ j ≤ n− 2,

(2n− 3)i− n+ 3, if j = n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ bn
2
c,

(2n− 3)i+ n− 2j + 4, if bn
2
c+ 1 ≤ j ≤ 2n+5

3
,

(2n− 3)i+ n− 2j + 3, if 2n+5
3

+ 1 ≤ j ≤ n− 1.

The induced vertex labels are as follows:
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Case 1b: Fori = 1

f v(vi,j) =



































































































n− 2j + 1, if 1 ≤ j ≤ bn
2
c − 7,

10, if j = bn
2
c − 6,

4, if j = bn
2
c − 5,

3j − 3bn
2
c+ 14, if bn

2
c − 4 ≤ j ≤ bn

2
c − 1,

n+ 5, if j = bn
2
c,

3n− 2j + 1, if bn
2
c+ 1 ≤ j ≤ n− 3,

n+ 4, if j = n− 2,

3n− 2j − 1, if n− 1 ≤ j ≤ n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ bn
2
c − 1,

(2n− 3)i+ n− 20b n
12
c − 5, if j = bn

2
c,

(2n− 3)i+ n− 2j + 4, if bn
2
c+ 1 ≤ j ≤ 10b n

12
c+ 4,

(2n− 3)i+ n− 2j + 3, if 10b n
12
c+ 5 ≤ j ≤ n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ bn
2
c,

(2n− 3)i− bn
2
c+ 3, if j = bn

2
c+ 1,

(2n− 3)i+ n− 2j + 5, if bn
2
c+ 2 ≤ j ≤ 2n+8

3
,

(2n− 3)i+ n− 2j + 4, if 2n+11
3

≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 5(mod 12) andn ≥ 17, is SVM.
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5.3.7 LinearEL(kCn) - Snake,n ≡ 6(mod 12) and n ≥ 18

Theorem 5.3.7.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 6(mod 12)

andn ≥ 18. Then EL(kCn) is SVM.

Proof. LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 6(mod 12) andn ≥ 18.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =







































































n− 2j − 1, if 1 ≤ j ≤ n
2
− 6,

2j − n+ 11, if n
2
− 5 ≤ j ≤ n

2
− 3,

2j − n+ 12, if n
2
− 2 ≤ j ≤ n

2
− 1,

n+ 2, if j = n
2
,

3n− 2j + 1, if n
2
+ 1 ≤ j ≤ n− 2,

3n− 2j − 1, if n− 1 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =























































(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n
2
− 1,

(2n− 3)i− n+ 7, if j = n
2
,

(2n− 3)i+ n− 2j + 4, if n
2
+ 1 ≤ j ≤ n− 1

2
(bn

3
c+ 3),

(2n− 3)i+ n− 2j + 3, if n− 1
2
(bn

3
c+ 1) ≤ j ≤ n− 3,

(2n− 3)i+ n− 2j + 2, if n− 2 ≤ j ≤ n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n
2
,

(2n− 3)i+ n− 2j + 5, if n
2
+ 1 ≤ j ≤ b3n

4
c,

(2n− 3)i+ n− 2j + 4, if b3n
4
c+ 1 ≤ j ≤ n− 1.

The induced vertex labels are as follows:
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Case 1b: Fori = 1

f v(vi,j) =



































































































n− 2j, if 1 ≤ j ≤ n
2
− 6,

6, if j = n
2
− 5,

2j − n+ 10, if n
2
− 4 ≤ j ≤ n

2
− 3,

2j − n+ 11, if n
2
− 2 ≤ j ≤ n

2
− 1,

n+ 4, if j = n
2
,

3n− 2j + 2, if n
2
+ 1 ≤ j ≤ n− 2,

n+ 3, if j = n− 1,

n, if j = n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n
2
− 1,

(2n− 3)i− 2n
3
+ 4, if j = n

2
,

(2n− 3)i+ n− 2j + 5, if n
2
+ 1 ≤ j ≤ 5n

6
,

(2n− 3)i+ n− 2j + 4, if 5n
6
+ 1 ≤ j ≤ n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n
2
,

(2n− 3)i− n
2
+ 4, if j = n

2
+ 1,

(2n− 3)i+ n− 2j + 6, if n
2
+ 2 ≤ j ≤ b3n

4
c+ 1,

(2n− 3)i+ n− 2j + 5, if b3n
4
c+ 2 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 6(mod 12) andn ≥ 18, is SVM.
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5.3.8 LinearEL(kCn) - Snake,n ≡ 7(mod 12) and n ≥ 19

Theorem 5.3.8.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 7(mod 12)

andn ≥ 19. Then EL(kCn) is SVM.

Proof. LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 7(mod 12) andn ≥ 19.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =



















































































n− 2j − 2, if 1 ≤ j ≤ bn
2
c − 7,

7, if j = bn
2
c − 6,

1, if j = bn
2
c − 5,

3j − 3bn
2
c+ 15, if bn

2
c − 4 ≤ j ≤ bn

2
c − 1,

n+ 3, if j = bn
2
c,

3n− 2j, if bn
2
c+ 1 ≤ j ≤ n− 3,

3n− 2j − 2, if n− 2 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =























































(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ bn
2
c − 1,

(2n− 3)i− n+ 8, if j = bn
2
c,

(2n− 3)i+ n− 2j + 3, if bn
2
c+ 1 ≤ j ≤ bn

3
c+ bn

2
c − 1,

(2n− 3)i+ n− 2j + 2, if bn
3
c+ bn

2
c ≤ j ≤ n− 4,

(2n− 3)i+ n− 2j + 1, if n− 3 ≤ n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ bn
2
c − 1,

(2n− 3)i+ n− 2j + 2, if bn
2
c ≤ j ≤ 1

2
(n+ bn

2
c)− 1,

(2n− 3)i+ n− 2j + 1, if 1
2
(n+ bn

2
c) ≤ j ≤ n− 1.
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The induced vertex labels are as follows:

Case 1b: Fori = 1

f v(vi,j) =



































































































n− 2j + 1, if 1 ≤ j ≤ bn
2
c − 7,

10, if j = bn
2
c − 6,

4, if j = bn
2
c − 5,

3j − 3bn
2
c+ 14, if bn

2
c − 4 ≤ j ≤ bn

2
c − 1,

n+ 5, if j = bn
2
c,

3n− 2j + 1, if bn
2
c+ 1 ≤ j ≤ n− 3,

n+ 4, if j = n− 2,

3n− 2j − 1, if n− 1 ≤ j ≤ n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =























































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ bn
2
c − 1,

(2n− 3)i− 2bn
3
c+ 4, if j = bn

2
c,

(2n− 3)i+ n− 2j + 4, if bn
2
c+ 1 ≤ j ≤ bn

3
c+ bn

2
c,

(2n− 3)i+ n− 2j + 3, if bn
3
c+ bn

2
c+ 1 ≤ j ≤ n− 3,

(2n− 3)i+ n− 2j + 2, if n− 2 ≤ j ≤ n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ bn
2
c − 1,

(2n− 3)i− bn
2
c+ 2, if j = bn

2
c,

(2n− 3)i+ n− 2j + 3, if bn
2
c+ 1 ≤ j ≤ 1

2
(n+ bn

2
c),

(2n− 3)i+ n− 2j + 2, if 1
2
(n+ bn

2
c) + 1 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 7(mod 12) andn ≥ 19, is SVM.
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5.3.9 LinearEL(kCn) - Snake,n ≡ 9(mod 12) and n ≥ 21

Theorem 5.3.9.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 9(mod 12)

andn ≥ 21. ThenEL(kCn) is SVM.

Proof. LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 9(mod 12) andn ≥ 21.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =



















































































n− 2j, if 1 ≤ j ≤ dn
2
e − 7,

7, if j = dn
2
e − 6,

1, if j = dn
2
e − 5,

3j − 3dn
2
e+ 15, if dn

2
e − 4 ≤ j ≤ dn

2
e − 1,

n+ 3, if j = dn
2
e,

3n− 2j + 2, if dn
2
e+ 1 ≤ j ≤ n− 2,

3n− 2j, if n− 1 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =























































(2n− 3)i− 2n+ 6, if j = 1,

(2n− 3)i− 2n+ 2j + 5, if 2 ≤ j ≤ dn
2
e − 1,

(2n− 3)i− n+ 5, if j = dn
2
e,

(2n− 3)i+ n− 2j + 5, if dn
2
e+ 1 ≤ j ≤ n

3
+ dn

2
e − 1,

(2n− 3)i+ n− 2j + 4, if n
3
+ dn

2
e ≤ j ≤ n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ dn
2
e − 1,

(2n− 3)i+ n− 2j + 4, if dn
2
e ≤ j ≤ 1

2
(n+ dn

2
e)− 1,

(2n− 3)i+ n− 2j + 3, if 1
2
(n+ dn

2
e) ≤ j ≤ n− 1.
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The induced vertex labels are as follows:

Case 1b: Fori = 1

f v(vi,j) =



















































































n− 2j + 1, if 1 ≤ j ≤ dn
2
e − 7,

10, if j = dn
2
e − 6,

4, if j = dn
2
e − 5,

3j − 3dn
2
e+ 14, if dn

2
e − 4 ≤ j ≤ dn

2
e − 1,

n+ 5, if j = dn
2
e,

3n− 2j + 3, if dn
2
e+ 1 ≤ j ≤ n− 2,

4n− 3j + 1, if n− 1 ≤ j ≤ n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =







































































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ dn
2
e − 1,

(2n− 3)i− 2n
3
+ 4, if j = dn

2
e,

(2n− 3)i+ 3, if j = dn
2
e+ 1 andi+ 1 = k,

(2n− 3)i+ 4, if j = dn
2
e+ 1 andi+ 1 6= k,

(2n− 3)i+ n− 2j + 6, if dn
2
e+ 2 ≤ j ≤ n

3
+ dn

2
e,

(2n− 3)i+ n− 2j + 5, if n
3
+ dn

2
e+ 1 ≤ j ≤ n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ dn
2
e − 1,

(2n− 3)i− dn
2
e+ 4, if j = dn

2
e,

(2n− 3)i+ n− 2j + 5, if dn
2
e+ 1 ≤ j ≤ 1

2
(n+ dn

2
e),

(2n− 3)i+ n− 2j + 4, if 1
2
(n+ dn

2
e) + 1 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 9(mod 12) andn ≥ 21, is SVM.
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5.3.10 LinearEL(kCn) - Snake,n ≡ 10(mod 12) and n ≥ 22

Theorem 5.3.10.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 10(mod 12)

andn ≥ 22. Then EL(kCn) is SVM.

Proof. Let EL(kCn) be a linear edge linked cyclic snake, wheren ≡ 10(mod 12) and

n ≥ 22.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =







































































n− 2j − 1, if 1 ≤ j ≤ n
2
− 6,

2j − n+ 11, if n
2
− 5 ≤ j ≤ n

2
− 3,

2j − n+ 12, if n
2
− 2 ≤ j ≤ n

2
− 1,

n+ 2, if j = n
2
,

3n− 2j + 1, if n
2
+ 1 ≤ j ≤ n− 2,

3n− 2j − 1, if n− 1 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n
2
,

(2n− 3)i+ 2n− 2j + 5, if n
2
+ 1 ≤ j ≤ 3bn

4
+ 1,

(2n− 3)i+ n− 2j + 4, if 3bn
4
≤ j ≤ n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ n
2
,

(2n− 3)i+ 2n− 2j + 5, if n
2
+ 1 ≤ j ≤ 3bn

4
c+ 1,

(2n− 3)i+ n− 2j + 4, if 3bn
4
c ≤ j ≤ n− 1.

The induced vertex labels are as follows:
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Case 1b: Fori = 1

f v(vi,j) =



































































































n− 2j, if 1 ≤ j ≤ n
2
− 6,

6, if j = n
2
− 5,

2j − n+ 10, if n
2
− 4 ≤ j ≤ n

2
− 3,

2j − n+ 11, if n
2
− 2 ≤ j ≤ n

2
− 1,

n+ 4, if j = n
2
,

3n− 2j + 2, if n
2
+ 1 ≤ j ≤ n− 2,

n+ 3, if j = n− 1,

n, if j = n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =























































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n
2
− 1,

(2n− 3)i− n+ bn
3
c+ 5, if j = n

2
,

(2n− 3)i+ n− 2j + 5, if n
2
+ 1 ≤ j ≤ n− 1

2
(bn

3
c+ 1),

(2n− 3)i+ n− 2j + 4, if n− 1
2
(bn

3
c − 1) ≤ j ≤ n− 2,

(2n− 3)i− n+ 5, if j = n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ n
2
,

(2n− 3)i− n
2
+ 4, if j = n

2
+ 1,

(2n− 3)i+ n− 2j + 6, if n
2
+ 2 ≤ j ≤ 3bn

4
c+ 2,

(2n− 3)i+ n− 2j + 5, if 3bn
4
c+ 3 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 10(mod 12) andn ≥ 22, is SVM..
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5.3.11 LinearEL(kCn) - Snake,n ≡ 11(mod 12) and n ≥ 23

Theorem 5.3.11.LetEL(kCn) be a linear edge linked cyclic snake, wheren ≡ 11(mod 12)

andn ≥ 23. ThenEL(kCn) is SVM.

Proof. Let EL(kCn) be a linear edge linked cyclic snake, wheren ≡ 11(mod 12) and

n ≥ 23.

Definef : E(EL(kCn)) → {1, 2, 3, · · · , (2n− 3)k + 3} as follows;

Case 1a: Fori = 1

f(ei,j) =



















































































n− 2j, if 1 ≤ j ≤ dn
2
e − 7,

7, if j = dn
2
e − 6,

1, if j = dn
2
e − 5,

3j − 3dn
2
e+ 15, if dn

2
e − 4 ≤ j ≤ dn

2
e − 1,

n+ 3, if j = dn
2
e,

3n− 2j + 2, if dn
2
e+ 1 ≤ j ≤ n− 2,

3n− 2j, if n− 1 ≤ j ≤ n.

Case 2a: For2 ≤ i ≤ k − 1

f(ei,j) =























































(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ dn
2
e − 1,

(2n− 3)i− n+ 8, if j = dn
2
e,

(2n− 3)i+ n− 2j + 5, if dn
2
e+ 1 ≤ j ≤ 10b n

12
c+ 8,

(2n− 3)i+ n− 2j + 4, if 10b n
12
c+ 9 ≤ j ≤ n− 3,

(2n− 3)i+ n− 2j + 3, if n− 2 ≤ j ≤ n− 1.

Case 3a: Fori = k

f(ei,j) =



























(2n− 3)i− 2n+ 2j + 5, if 1 ≤ j ≤ dn
2
e − 2,

(2n− 3)i+ n− 2j + 2, if dn
2
e − 1 ≤ j ≤ 9b n

12
c+ 7,

(2n− 3)i+ n− 2j + 1, if 9b n
12
c+ 8 ≤ j ≤ n− 1.
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The induced vertex labels are as follows:

Case 1b: Fori = 1

f v(vi,j) =



















































































n− 2j + 1, if 1 ≤ j ≤ dn
2
e − 7,

10, if j = dn
2
e − 6,

4, if j = dn
2
e − 5,

3j − 3dn
2
e+ 14, if dn

2
e − 4 ≤ j ≤ dn

2
e − 1,

n+ 5, if j = dn
2
e,

3n− 2j + 3, if dn
2
e+ 1 ≤ j ≤ n− 2,

4n− 3j + 1, if n− 1 ≤ j ≤ n.

Case 2b: For2 ≤ i ≤ k − 1

f v(vi,j) =























































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ dn
2
e − 1,

(2n− 3)i− 20b n
12
c+ n− 13, if j = dn

2
e,

(2n− 3)i+ n− 2j + 6, if dn
2
e+ 1 ≤ j ≤ 10b n

12
c+ 9,

(2n− 3)i+ n− 2j + 5, if 10b n
12
c+ 10 ≤ j ≤ n− 2,

(2n− 3)i− n+ 6, if j = n− 1.

Case 3b: Fori = k

f v(vi,j) =







































(2n− 3)i− 2n+ 2j + 4, if 2 ≤ j ≤ dn
2
e − 2,

(2n− 3)i− dn
2
e+ 3, if j = dn

2
e − 1,

(2n− 3)i+ n− 2j + 3, if dn
2
e ≤ j ≤ 9b n

12
c+ 8,

(2n− 3)i+ n− 2j + 2, if 9b n
12
c+ 9 ≤ j ≤ n− 1.

It can be easily verified thatf is a Super Vertex Mean labeling as it is an injective mapping

and the set of edge labels and induced vertex labels is{1, 2, 3, ..., (2n− 3)k+ 3}. Therefore

linearEL(kCn) - snake,n ≡ 11(mod 12) andn ≥ 23, is SVM.
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5.4 Conclusion

We have so far successfully proved that all the edge linked linear cyclic snakes are Super

Vertex Mean graphs. A researcher is further encouraged to attempt to prove the SVM -

behaviour of non-linear edge linked cyclic snakes. In the case of non-linearEL(kCn) -

snake, the value ofs′i for eachi may not be equal to
⌊

n
2

⌋

− 1 and
⌈

n
2

⌉

− 1.
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Chapter 6

SVM Graphs of Order ≤ 7

For a researcher a natural quest arises to examine all the graphs up to a certain order as to

find out how many of them fall into the category of SVM - graphs.Therefore, in this chapter

we investigate the SVM - behaviour of all graphs up to order5 and all regular graphs up to

order7.

6.1 Preliminary Observations

6.1.1 Necessary Condition

If d(v) = 0 for any vertexv of G then it is called an isolated vertex and ifd(v) = 1 then

it is called a pendant vertex. From the definition of Super Vertex Mean labeling it is clear

that a graph containing a vertexv whosed(v) ≤ 1 cannot be a Super Vertex Mean graph.

Therefore, necessarilydeg(v) ≥ 2 for all verticesv of a SVM graphG. It is obvious that no

tree is a SVM graph. In this chapter, we discuss only those graphsG with d(v) ≥ 2 for all

verticesv of G.

6.1.2 Regularity of Graphs

If d(v) = r, for every vertexv of a graphG, thenG is called ar-regular graph. From

the above observation, we know that no zero regular or1-regular graph is an SVM graph. A
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(p, q) - graphG can ber-regular graph if and only ifp× r is even. It is derived from the fact

that ’Odd order graphs cannot be odd-regular graphs [Theorem 2.6] of [8].’ Consequently

the number of edges of ar-regular graph is(p×r

2
), i.e.,q = (p×r

2
).

6.1.3 Cycles are SVM

All the cyclesCn, n ≥ 3 are2-regualar graphs as the degree of each vertex is2. In our

previous chapters we have proved that all cycles,Cn for anyn ≥ 3, exceptC4 are SVM -

graphs.

6.2 List of Regular Graphs of Order ≤ 7

6.2.1 Of order3

When order of a graphG is 3, there is just one2-regular graph. This is a cycle of length

3, known asC3 orK3. We have already proved that it is an SVM - graph.

6.2.2 Of order4

There are two regular graphs of order4, of whichC4 is 2-regular andK4 is 3-regular. We

have proved thatC4 cannot be a SVM - graph.

6.2.3 Of order5

We have a4-regular graphK5 with 10 edges and a2-regular graphC5 with 5 edges of

order5, of whichC5 have been proved to be a SVM - graph.

6.2.4 Of order6

There are a total of6 regular graphs of order6. They areC6, the disjoint union of two

C3’s, both of which are2-regular, two non-isomorphic3-regular graphs with9 edges each, a

4-regular graph with12 edges and the5-regular graphK6 with 15 edges.
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6.2.5 Of order7

The number of regular graphs of order7 is 5. They areC7, disjoint union ofC3 andC4,

both of which are2-regulars, two non-isomorphic4-regular graphs with14 edges and the

complete graphK7, which is6-regular.

Now we proceed to prove that all these regular graphs are Super Vertex Mean graphs,

exceptingC4. Before that we discuss the behaviour of disjoint union of graphs.

6.3 Disjoint Union of Graphs

The disjoint union ofm copies of a graphG is denoted bymG. The union of two graphs

G1 andG2 is a graphG1 ∪ G2 with V (G1 ∪ G2) = V (G1) ∪ V (G2) andE(G1 ∪ G2) =

E(G1) ∪ E(G2).

Theorem 6.3.1.If G is an SVM - graph, so ismG and ifG1 andG2 are SVM graphs, so is

G1 ∪G2. The converse is not true.

Proof. For the first part of the theorem, it is enough to prove that ifG1 andG2 are two SVM

- graphs, thenG1 ∪G2 is also SVM.

LetG1(p1, q1) andG2(p2, q2) be two SVM graphs with Super Vertex Mean labelingsf and

g respectively on them. Let,

E(G1) = {ei : 1 ≤ i ≤ q1}, V (G1) = {ui : 1 ≤ i ≤ p1},

E(G2) = {e′i : 1 ≤ i ≤ q2}, V (G2) = {u′i : 1 ≤ i ≤ p2}.

Defineh : E(G1 ∪G2) → {1, 2, 3, · · · , p1 + q1 + p2 + q2} by

h(ei) = f(ei), for 1 ≤ i ≤ q1, h(e
′

i) = p1 + q1 + g(e′i), for 1 ≤ i ≤ q2

Now we show thath is an injection. Let,

h(ei) = h(ej) ⇒ f(ei) = f(ej)

119



Since,f is an injection, we have,ei = ej.

Let,h(e′i) = h(e′j) ⇒ p1 + q1 + g(e′i) = p1 + q1 + g(e′j)

⇒ g(e′i) = g(e′j)

Since,g is an injection, we have,

e′i = e′j.

Thereforeh is also and injection.

Suppose

h(e′i) = hv(u′j)

⇒ p1 + q1 + g(e′i) = p1 + q1 + gv(u′j)

⇒ g(e′i) = gv(u′j)

which is a contradiction asg is Super Vertex Mean labeling.

Soh is a SVM labeling.

To prove the second part of the theorem, we prove that althoughC4 is not a SVM - graph,

2C4 andC3 ∪ C4 are SVM - graphs.

Also we prove the general case thatC3 ∪ Cm is SVM for allm ≥ 3.

We know thatCm is SVM graph for allm ≥ 3 andm 6= 4. Therefore it is enough to prove

thatC3 ∪ C4 and2C4 are SVM - graphs.

Case 1:C3 ∪ C4 is a SVM - graph.

Let,

E(C3) = {e1, e2, e3}

and

E(C4) = {e′1, e
′

2, e
′

3, e
′

4}

Definef : E(C3 ∪ C4) → {1, 2, 3, · · · , 13, 14} by

f(e1) = 1, f(e2) = 3, f(e3) = 7

f(e′1) = 6, f(e′2) = 10, f(e′3) = 14, f(e′4) = 11
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It is clear thatf is a Super Vertex Mean labeling ofC3 ∪ C4. ThereforeC3 ∪ C4 is SVM

- graph, thoughC4 is not.

Example 6.3.2.Super vertex mean labeling ofC3 ∪ C4 is shown in Figure6.1.

4

2 5

9 13

8 12

1 7

3

11

6 14

10

Figure 6.1: Super vertex mean labeling ofC3 ∪ C4

Case 1a. General Case:C3 ∪ Cm is SVM for allm ≥ 3 includingm = 4.

All cycles, exceptC4, are SVM - graphs and so their union, but thenC3 ∪ C4 is a SVM -

graph. So, it is a clear fact thatC3 ∪ Cm is SVM for allm ≥ 3. But we want to prove it in

an alternate way without deriving from the above theorem andthe fact thatC3 andCm are

SVM - graphs for allm 6= 4.

Proof. There is nothing to prove in the case of oddm as all odd cycles are SVM - graphs and

their union is also SVM. Without loss of generality, we assume thatm is even andm ≥ 4.

Letm = 2n for somen ≥ 2.

Let

E(C3) = {e1, e2, e3}

and

E(Cm) = {e′1, e
′

2, · · · , e
′

m = e′2n}

Definef : E(C3 ∪ Cm) → {1, 2, 3, · · · , 2m+ 6 = 4n+ 6} by

f(e1) = 1, f(e2) = 3, f(e3) = 7
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f(e′i) =



























6 if i = 1

4i+ 2 if 2 ≤ i ≤ n+ 1

8n− 4i+ 11 if n+ 2 ≤ i ≤ 2n = m

Thusf is a super vertex mean labeling ofC3 ∪ Cm for all evenm ≥ 4, and it is an SVM

graph.

Case 2:2C4 is a SVM - graph.

Proof. LetC4 andC ′

4 be two cycles of length4.

Let

E(C4) = {e1, e2, e3, e4}

and

E(C ′

4) = {e′1, e
′

2, e
′

3, e
′

4}

Definef : E(C4 ∪ C
′

4) → {1, 2, 3, · · · , 15, 16}

by

f(e1) = 1, f(e2) = 3, f(e3) = 5, f(e4) = 10

f(e′1) = 7, f(e′2) = 11, f(e′3) = 14, f(e′4) = 16

Thenf is a Super Vertex labeling of2C4, and2C4 is a SVM - graph.

Example 6.3.3.Super vertex mean labeling of2C4 is shown in Figure 6.2.

Corollary 6.3.4. mC4 is a SVM - graph for all evenm ≥ 2.

Proof. By the above theorem, we have proved that2C4 and union of any two SVM - graphs

is a SVM - graph.

Any evenm is a multiple of2, and thereforemC4 is a union ofm
2

times of2C4. Or,mC4,

for m ≥ 4, m ≡ 0 (mod 2) is equal to(m − 2)C4 ∪ 2C4, where both of which are SVM -

graphs. Thus the corollary.
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2

4

6

8

9 12

13 15

3 10

5

7

11 16

1

14

Figure 6.2: Super vertex mean labeling of2C4.

Corollary 6.3.5. Disjoint union of any number of cycles of any length, exceptC4 is a SVM -

graph.

Proof. Since all the cycles exceptC4 are SVM - graphs, by the above theorem, their unions

are SVM - graphs. Thus the corollary.

Corollary 6.3.6. When the disjoint union of any number of cycles of any length containsC4,

it is a SVM - graph when,

1. There are even number ofC4 in the union, or

2. There exists at least oneC3 in the union.

Proof. 1. If there are even number ofC4 in the union, by the above corollary 1, union of

these is SVM graph. All other cycles are SVM graphs. Therefore the union of both is a SVM

graph by above theorem.

2. If there exists at least oneC3 in the union of cycles, then the union of thisC3 and

any oneC4, if C4 has an odd occurrence, is a SVM - graph. Otherwise,C4 occurs in even

number of times, and their union is proved to be a SVM - graph.
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6.4 Regular Graphs as SVM - Graphs

Theorem 6.4.1.Regular graphs of order≤ 7 and Petersen graph are SVM -graphs,C4 being

the only exception.

6.4.1 Petersen graph

Given in Figure 6.3 is an SVM labeling of3 − regular graph of order10, known as

Petersen Graph.

Sincef(U)∪f v(V ) = {1, 2, 3, · · · , 24, 25}, it is a SVM - labeling. While labeling Petersen

3 13

10 12

9 6 14 21

19

23

5

17

2420

1

4

7

11 2

8

15

18

25

16

22

Figure 6.3: SVM labeling of Petersen Graph.

graph, it is interesting to observe that the sum of all vertexlabels is2
3

of the sum of all vertex

labels.

i.e.,
∑

v∈V (G)

f v(v) =

(

∑

e∈E(G) f(e)× 2

3

)

It happens because when we calculate the induced vertex label which is rounded up

average of the labels of3 − edges that are incident on that particular vertex, we consider the

edges twice.
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Being a SVM labeling, sum of all these labels is,
(

(p+ q)(p+ q + 1)

2

)

=
∑

v∈V (G)

f v(v) +
∑

e∈E(G)

f(e)

=

(

∑

e∈E(G) f(e)× 2

3

)

+
∑

e∈E(G)

f(e)

=

(

∑

e∈E(G) f(e)× 5

3

)

Here for Petersen graph, the total is325, and sum of all edge labels is195 and that of all

vertex labels is130, perfectly in agreement with the above observation.

This need not be a necessary phenomenon for all types of SVM - labeling of regular

graphs. But this happens true for most of the regular graphs which we have examined. This

fact is used as a hint for labeling the following graphs of order up to7.

6.5 Regular graphs of order3.

The only2− regular graph of order3 is the cycleC3. We know thatC3 is a SVM - graph.

6.6 Regular graphs of order4.

Regular graphs of order4 areC4, which is2 - regular andK4, that is3 - regular. We

know thatC4 is not a SVM - graph. We prove that3 - regular graph of order4, i.e.,K4 is a

SVM - graph.

By above observation,
(

(p+ q)(p+ q + 1)

2

)

=
∑

v∈V (G)

f v(v) +
∑

e∈E(G)

f(e)

=

(

∑

e∈E(G) f(e)× 2

3

)

+
∑

e∈E(G)

f(e)

=

(

∑

e∈E(G) f(e)× 5

3

)
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In this case ofK4, we have,

∑

e∈E(G)

f(e) =
3

5
×

(

(p+ q)(p+ q + 1)

2

)

ie.,
∑

e∈E(G)

f(e) =
3

5
×

(

10× 11

2

)

= 33

and,
∑

v∈V (G)

f v(v) =
2

5
×

(

10× 11

2

)

= 22

So we can select the set{4, 5, 6, 7}, as the vertex label set, the sum of whose elements is

equal to22. Consequently the edge label set is{1, 2, 3, 8, 9, 10}, sum of whose elements is

33. We have partitioned the positive integers up top+ q, (here it is10) in the above manner

by the following logic. These numbers,1 to 10, have to be distributed into two mutually

disjoint sets in such a way that except any4 numbers that are reserved as induced vertex

labels, have to be clubbed in4 sets of3 elements (K4 is a 3 - regular graph) and have to

appear exactly twice without two numbers of one set coming together in some other set. it is

because two vertices are connected by a single edge. And in a complete graph likeK4, each

vertex is connected by an edge to every other vertex of the graph.

It is impossible to include the numbers1, 2, 9 and10 in vertex label set. While calculating

the average we cannot obtain one of these numbers as the rounded up average of any3

numbers up to10, without including the same number. Using the same number both as

vertex label and edge label is ruled out by the definition of SVM - labeling.

Therefore,

{1, 2, 9, 10} ⊆ f(E)

The sum of these numbers is22. If we take two more numbers in the edge label set (K4

has6 edges), so that the sum equal to33, we are done. By careful way of inspection, we
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4 7

5 6

4 7
1

3 9

2

2

1

8 10

5 6

3 9

8 10

4 7

5 6

4 7

5 6

9

2

10

8

1 3

10

2 8

9

1 3

Figure 6.4:K4 is SVM - labeled in4 different ways.

have found that the only possibility is to include the numbers3 and8 in to the above set.

So,

f(E) = {1, 2, 3, 8, 9, 10}

and,

f v(V ) = {4, 5, 6, 7}

Using these sets, we can labelK4 in 4 different ways as shown below in Figure 6.4.

6.7 Regular graphs of order5

Ther - regular graphs,3 ≤ r ≤ p−1 of orderp = 5 areC5, which is a2− regular graph,

andK5 which is4− regular graph. The graph being of an odd order, there cannot be any odd

regular graphs. In our previous chapters we have proved thatC5, a cycle of length5 is SVM

graph. Now we proceed to prove thatK5, the complete graph of order5 is SVM graph.
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We observe that any complete graphKn for somen ≥ 3 is a n − 1 regular graph.

Therefore it hasn×(n−1)
2

edges.

Therefore,

p+ q = n+
n× (n− 1)

2

Equivalently, for anyr− regular graph,

p+ q = n+
n× r

2

=
n× (r + 2)

2

Whenr = n− 1, we get

p+ q =
n× (n+ 1)

2

ForK5,

p+ q =
5× 6

2
= 15

As in the case ofK4, here

∑

v∈V (G)

f v(v) =

∑

e∈E(G) f(e)× 2

4

may be true. It is because every edge is counted twice while finding the induced vertex label

which is the rounded up average of labels of4 edges incident on that particular vertex.

Therefore,

(p+ q)× (p+ q + 1)

2
=
∑

v∈V (G)

f v(v) +
∑

e∈E(G)

f(e)

=
∑

e∈E(G)

f(e) +
1

2
×
∑

e∈E(G)

f(e)

=
3

2
×
∑

e∈E(G)

f(e)

⇒
∑

e∈E(G)

f(e) =
2

3
×

(p+ q)× (p+ q + 1)

2

Now,
(p+ q)× (p+ q + 1)

2
=

15× 16

2
= 120
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∑

e∈E(G)

f(e) = 80

∑

v∈V (G)

f v(v) = 40

From the set{1, 2, 3, · · · , 14, 15}, the subset{1, 2, 14, 15} has to be a subset off(E)

in SVM labeling. If 3 becomes a vertex label, then5 and6 cannot become vertex labels

because when3 and6 or 3 and5 become vertex labels, then among10, 11, 12 and13, only

three numbers could be chosen as induced vertex labels.

For example,

3 = Round

(

1 + 2 + 3 + 4

4

)

6 = Round

(

1 + 7 + 8 + 9

4

)

If we select10 and13 as the next two vertex labels then only11 can be the fifth one,

i.e.,

13 = Round

(

9 + 12 + 14 + 15

4

)

13 = Round

(

11 + 12 + 14 + 15

4

)

Then

13 = Round

(

9 + 12 + 14 + 15

4

)

The remaining numbers that could be used to get rounded up average of10 and11 are

2, 4, 5, 7, 8, 12, 14 and15, and they can be classified into3 sets which appeared elsewhere.

So we cannot have any option to have rounded up average of10 and11 without repeating

any numbers which already appeared in pair.

If we select11 and13 as vertex labels where,

13 = Round

(

9 + 12 + 14 + 15

4

)

or,

13 = Round

(

10 + 12 + 14 + 15

4

)

then12 cannot be the fifth vertex label.10 is already ruled out to be the vertex label with13

as another vertex label.
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Therefore,13 has to be an edge label and10, 11 and12 can be vertex labels along with3.

Here too,12 has only three options left,

12 = Round

(

4 + 13 + 14 + 15

4

)

12 = Round

(

5 or 6 + 13 + 14 + 15

4

)

12 = Round

(

7 + 13 + 14 + 15

4

)

This implies10 and11 are obtained as averages by making use of any one of the numbers

among13, 14 and15.

For example,11 cannot be made a vertex label without repeating any one of theabove

numbers.

Therefore when3 becomes a vertex label, the only next vertex label can be7 or any

number greater than7. By continuing our inspection in a similar way we get the possible

sets which can be vertex label set as follows;

1. {3, 7, 8, 10, 12}

2. {3, 7, 9, 10, 11}

3. {4, 6, 7, 10, 13}

4. {4, 6, 7, 11, 12}

5. {4, 6, 8, 9, 13}

6. {4, 6, 8, 10, 12}

7. {4, 6, 9, 10, 11}

8. {6, 7, 8, 9, 10}

9. {6, 7, 8, 9, 11}

It is interesting to note that except the9th set, all the others follow the rule,

∑

v∈V (G)

f v(v) =
1

2
×
∑

e∈E(G)

f(e) = 40

Therefore forr - regular graphs, the condition

∑

v∈V (G)

f v(v) =
2

r
×
∑

e∈E(G)

f(e)

130



is not a necessary condition, but only a hint to SVM labeling.

Example 6.7.1.Given below in Figure6.5 are the pictorial representations of nine different

SVM - labelings ofK5.

6.8 Regular graphs of order6

Regular graphs having no isolated or pendant vertex of order6 are the cycle,C6 and2C3,

which are2 - regulars,K3,3 and another graph with9 edges, both of them are3 - regulars,

the octahedral graph with12 edges, which is4- regular and the complete graphK6. In total

there are6 non-isomorphic r-regular graphs of order6, where2 ≤ r ≤ 5.

We have already proved thatC6 and2C3 are SVM graphs. We show now thatK3,3 is a SVM

graph.

6.8.1 K3,3

ForK3,3, p = 6 andq = 9.

Therefore,

f(E) ∪ f v(V ) = {1, 2, 3, · · · , 14, 15}

While inspecting the possibility of SVM labeling ofK3,3 we have to keep the following

in mind:

1. Partition the above set into two sets, keeping the hint forlabelingr- regular graphs, i.e.,
∑

v∈V (G) f
v(v) = 2

r
×
∑

e∈E(G) f(e)

2. Clearlyf v(V ) contains6 elements andf(E) has9 elements.

3. Now the setf(E) is distributed into six sets of3 elements each in such a way that,

3. a) The rounded up average of each set is one of the numbers inthe setf v(V ). These

numbers are not repeated.

3. b)These six sets form two partitions, each partition having 3 sets and no number in one

set of one partition is repeated in another set of the same partition.
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Figure 6.5:9 different SVM - labelings ofK5
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Figure 6.6: Pictorial representation of SVM - labelings ofK3,3

3. c) All the three numbers in one set of one partition are distributed equally in each set of

the second partition.

Following above directions we form six subsets off(E) as given below;

{1, 2, 6}, {4, 7, 12}, {11, 14, 15} and {1, 4, 11}, {6, 7, 14}, {2, 12, 15} whose rounded up

averages are3, 8, 13, 5, 9 and10 respectively.

Note that unions of the first three sets and the last three setsare having the same elements,

the only difference being that two elements of any set do not appear together in any other

set. The first three sets and the last three sets in themselvesform two different partitions of

the setf(E).

Example 6.8.1.The above labelings are shown pictorially in Figure6.6. One more SVM -

labeling ofK3,3 is given in the same Figure.
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6.8.2 Another3-regular graph of order 6

There is another3 - regular graph that is non-isomorphic toK3,3 with 9 edges and6

vertices.Therefore we cannot use the same method that we used in the case of the previous

graph. The SVM labelings of this graph is shown below in Figure6.7.

3 9

6 7

11 12

5

2

14

8

4

1 10

15

13

3 4

12

8 10

1

52

15

6 7

14

11

13

9

Figure 6.7: SVM - labelings of another3-regular graph of order6

6.8.3 4-regular graph of order 6 – Octahedral graph

There is yet another graph of order6 and having12 edges, which is a4 -regular graph.

This graph is known as Octahedral graph. For this graph,

p+ q = 18
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(p+ q)× (p+ q + 1)

2
= 171

∑

v∈V (G)

f v(v) =
2

r
×
∑

e∈E(G)

f(e)

=
2

4
×
∑

e∈E(G)

f(e)

171 =
3

2
×
∑

e∈E(G)

f(e)

∑

v∈V (G)

f v(v) =
171

3
= 57

Using this hint we can partition the numbers up to18 into two sets as given below;

f(E) = {1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 18}

f v(V ) = {3, 8, 9, 10, 11, 16}

wheref(E) containsq elements andf v(V ) hasp elements. The elements off(E) are

repeated exactly once to find the rounded up average of four numbers off(E), in order to

obtain the elements inf v(V ). Care should be taken so as not to place two numbers together

while finding a second rounded up average. Thus we find that this 4- regular graph of order

6 too is a SVM - graph with the SVM - labeling as shown in Figure6.8.

9 8

3 16

11 10

1

2

12

4

5

7

17

18

6

13

14

15

Figure 6.8: SVM - labeling of a4-regular graph of order6 – Octahedral Graph
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6.8.4 The Complete graphK6

Now we have the task of labelingK6, the complete graph of order6. Being a5- regular

graph the hint that we could use is that,

∑

v∈V (G)

f v(v) =
2

5
×
∑

e∈E(G)

f(e)

The total sum of all the numbers up top+q, i.e., up to21 is 231, wherep = 6 andq = 15.

By the definition of SVM - labeling, we have,

231 =
∑

v∈V (G)

f v(v) +
∑

e∈E(G)

f(e)

This implies that,
7

5
×
∑

e∈E(G)

f(e) = 231

∑

e∈E(G)

f(e) =
231× 5

7
= 165

and,
∑

v∈V (G)

f v(v) =
231× 2

7
= 66

So we partition the numbers up to21 into two sets,

f(E) = {1, 2, 3, 5, 6, 7, 8, 9, 14, 15, 17, 18, 19, 20, 21}

f v(V ) = {4, 10, 11, 12, 13, 16}

havingq andp elements respectively and the respective sum of its membersbeing165 and

66.

The other aspects are also kept in mind as in the previous cases of labeling regular and

complete graphs.

In a complete graph’s SVM - labeling, the(n − 1) elements off(E) that are taken to

calculate the rounded up average (in order to get one of the elements off v(V )) are used a

total of (n − 1) instances. But they are used one at a time, and without repeating. Whereas

in a r-regular graph’s labeling onlyr - elements are used only in anyr - instances, one at a

time and without repeating. Thus we obtain a SVM - labeling ofK6 as shown in Figure6.9.
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Figure 6.9: SVM - labeling ofK6, the complete graph of order6.

6.9 Regular graphs of order7

There are5 regular graphs of order7 that do not have any isolated and pendant vertex.

They areC7, C3 ∪C4, which are2 - regulars, two non-isomorphic4 - regular graphs andK7,

the complete graph which is6 - regular. We have already proved thatC7 andC3 ∪ C4 are

SVM graphs. Let us investigate the SVM behaviour of the rest of graphs of order7.

6.9.1 4 - regular graphs of order 7

We start with4 - regular graphs of order7. As in previous cases we can use the following

hint that;
∑

v∈V (G)

f v(v) =
2×

∑

e∈E(G) f(e)

4

and, sincep+ q = 7 + 14 = 21, we have

(p+ q)(p+ q + 1)

2
= 231

3

2
×
∑

e∈E(G)

f(e) = 231

∑

v∈V (G)

f v(v) +
∑

e∈E(G)

f(e) = 231
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∑

e∈E(G)

f(e) =
2× 231

3
= 154

∑

v∈V (G)

f v(v) =
231

3
= 77

So we partition the numbers up to21 into two possible sets, havingq andp elements

respectively;

f(E) = {1, 2, 4, 5, 6, 7, 8, 9, 13, 15, 16, 17, 18, 20, 21}

f v(V ) = {3, 8, 10, 11, 12, 12, 19}

These two partitions give rise to two different labelings for the two non-isomorphic4-

regular graphs of order7 as shown in Figure6.10.

6.9.2 The complete graphK7

Now we proceed to prove thatK7 is a SVM graph.K7 being a6 -regular graph of order

7 and each vertx is connected to every other vertex by a unique edge, we have to partition

the numbers up ton×(n+1)
2

, since for a complete graph,Kn, p+ q = n×(n+1)
2

.

i.e.,
7× 8

2
= 28

The hint that we could use as in previous cases is that

∑

v∈V (G)

f v(v) =
2×

∑

e∈E(G) f(e)

6

and, sincep+ q = 28, we have

(p+ q)(p+ q + 1)

2
= 406

4

3
×
∑

e∈E(G)

f(e) = 406

∑

v∈V (G)

f v(v) +
∑

e∈E(G)

f(e) = 406

∑

e∈E(G)

f(e) =
406× 3

4
= 101.5
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Figure 6.10: Two non-isomorphic4 -regular graphs of order7 are SVM labeled

∑

v∈V (G)

f v(v) =
406

4
= 304.5

For our convenience, we take this as

∑

e∈E(G)

f(e) = 102

∑

v∈V (G)

f v(v) = 304

Based on this, we obtain the following partitions of the numbers upto28

f(E) = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28}
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f v(V ) = {4, 12, 13, 15, 16, 19, 23}

havingq andp elements respectively.

Careful distribution of these numbers as various edge as wellas vertex labels, keeping

the facts mentioned in earlier cases, we obtain the SVM labeling of K7 as shown in Figure

6.11..
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Figure 6.11: SVM - labeling ofK7

6.10 Super Vertex Mean Graphs of Order≤ 5

Theorem 6.10.1.All the graphs of order≤ 5 having no isolated or pendant vertex are Super

Vertex Mean graphs,C4 being the only exception.

We have so far proved that all the complete and regular graphs, (exceptC4) of order up

to 7, are SVM graphs and graphs containing any isolated or pendant vertex are not SVM

graphs. In this section we examine all other graphs of order≤ 5 and do not fall into the

above category of graphs.
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6.10.1 Of the order4

There are3 graphs withd(v) ≥ 2 of order4, out of which a graph with5 edges fulfill our

requirement and so we examine its SVM - behaviour and find thatit is a SVM - graph. Its

labeling is given in Figure6.12.

2

4 8

6
3

7

91

5

Figure 6.12: SVM labeling of a graph with5 edges and of order4

6.10.2 Of the order5

Of the order5, there are altogether10 non-isomorphic graphs withd(v) ≥ 2. Among

those, the SVM - nature of8 more graphs needs to be investigated for our present study. We

have found that they are all SVM - graphs as shown in Figure6.13..

6.11 Conclusion

We conclude by stating that all ther - regular graphs of order≤ 7 and all graphs having

no isolated or pendant vertex and order≤ 5, excludingC4 are SVM - graphs.
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Figure 6.13:8 non-isomorphic Graphs of order5 are SVM.
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Chapter 7

On Construction of SVM - Graphs

In this chapter we will show that disjoint union of all SVM - graphs, especially cycles,

includingmC4, and those containingC4 in it, is SVM - graph, even thoughC4 is not an SVM

- graph. We also construct some new SVM - graphs by joining twovertices of a cycleCn

by a chord. We also discuss the SVM - behaviour ofP 2
n graphs, thoughPn is not an SVM -

graph.

7.1 A Few Known Results

1. If G is an SVM - graph, so ismG and if G1 andG2 are SVM - graphs, so isG1∪G2.

2. Although C4 is not a SVM - graph, 2C4 andC3 ∪ C4 are SVM - graphs.

3. C3 ∪ Cm is SVM for all m ≥ 3 including m = 4.

4. mC4 is a SVM - graph for all evenm ≥ 2.

5. Disjoint union of any number of cycles of any length, exceptC4 is a SVM - graph.

6. When the disjoint union of any number of cycles of any length containsC4, it is a

SVM - graph when,

• there are even number ofC4 in the union, or
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• there exists at least oneC3 in the union.

7.2 Disjoint Union of Cycles as SVM - Graph

we proceed to prove thatmC4 for all m ≥ 2 is a Super Vertex Mean Graph.

7.2.1 mC4 for all m ≥ 2 as SVM - graph

Theorem 7.2.1.mC4 for all m ≥ 2 is a Super Vertex Mean Graph

Proof. We know thatmC4 is a SVM - graph for all evenm [Result 4]. So it is enough to

prove thatmC4 is a SVM - graph for all oddm. For this we prove that3C4 is a SVM - graph.

LetC4, C
′

4 andC ′′

4 be3 cycles of length 4.

LetE(C4) = {e1, e2, e3, e4}, E(C
′

4) = {e′1, e
′

2, e
′

3, e
′

4} andE(C ′′

4 ) = {e′′1, e
′′

2, e
′′

3, e
′′

4}

Definef : E(C4 ∪ C
′

4 ∪ C
′′

4 ) → {1, 2, 3, ..., 23, 24} as follows:

f(e1) = 1, f(e2) = 3, f(e3) = 5, f(e4) = 11,

f(e′1) = 7, f(e′2) = 10, f(e′3) = 16, f(e′4) = 21,

f(e′′1) = 12, f(e′′2) = 17, f(e′′3) = 22, f(e′′4) = 24.

And the induced vertex label set is{2, 4, 6, 8, 9, 13, 14, 15, 18, 19, 20, 23}.

It can be easily verified thatf is a super vertex mean labeling.

Since disjoint union of any SVM - graphs is an SVM - graph, we have the result.

7.2.2 Cm ∪ Cn for all m ≥ 3 and n ≥ 3 as SVM - graph

Theorem 7.2.2.The graphCm ∪ Cn is a SVM - Graph for allm ≥ 3 andn ≥ 3.

Proof. All cycles, exceptC4 and their disjoint unions are SVM - graphs [Result 5]. So we

know that the graphCm ∪Cn is a SVM - Graph excepting the case where the union contains

Cm orCn where eitherm or n is equal to4.
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Let m = 4 andE(Cm) = {e1, e2, e3, e4} andV (Cm) = {v1, v2, v3, v4} wherevi =

eiei+1, 1 ≤ i ≤ 3 andv4 = e4e1

Let E(Cn) = {e′1, e
′

2, · · · , e
′

n}, V (C ′

n) = {v′1, v
′

2, v
′

3, · · · , v
′

n} such thatv′i = e′ie
′

i+1, 1 ≤

i ≤ n− 1 andvn = e′ne
′

1

Herep = n+ 4 & q = n+ 4 and sop+ q = 2n+ 8.

We consider the following two cases;

Case 1.Whenn is even.

If n = 4, then we know that2C4 is a SVM - graph. Therefore letn ≥ 6.

Definef : E(Cn ∪ C4) → {1, 2, 3, · · · , 2n+ 8} by

f(e′i) =











2i− 1, if 1 ≤ i ≤ n
2
+ 2,

2i+ 8, if n
2
+ 3 ≤ i ≤ n.

f(e1) = n+ 4, f(e2) = n+ 7, f(e3) = n+ 13, f(e4) = n+ 11.

Clearlyf is an injective function and

f(E) ∪ f(V ) = {1, 2, 3, · · · , 2n+ 8}.

Thereforef is a SVM - labeling ofC4 ∪ Cn, wheren is even.

Case 2.Whenn is odd.

We know that whenn = 3, C4 ∪ C3 is a SVM - graph. So letn ≥ 5.

Definef : E(C4 ∪ Cn) → {1, 2, 3, · · · , 2n+ 8} by

f(e1) = 1, f(e2) = 3, f(e3) = 5, f(e4) = 11.

f(e′i) =























































7, if i = 1,

10, if i = 2,

8 + 2i, if 3 ≤ i ≤ 5,

4i− 2, if 6 ≤ i ≤ n+5
2
,

4n+ 19− 4i, if n+7
2

≤ i ≤ n.
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Clearlyf is an injective function and

f(E) ∪ f(V ) = {1, 2, 3, · · · , 2n+ 8}.

Thereforef is a SVM - labeling ofC4 ∪ Cn, wheren is odd.

HenceCm ∪ Cn is a SVM - Graph for allm ≥ 3 andn ≥ 3.

Corollary 7.2.3. Disjoint union of any number of cycles of any length is a SVM - graph,

except the fact thatC4 is not a SVM - graph.

Proof. The result is obtained from the above two theorems.

7.2.3 SVM - labeling method for union of SVM - graphs

LetG1, G2, · · · , Gm bemSVM graphs with SVM - labelingsf1, f2, · · · , fm respectively.

By the above theorem we know thatG1 ∪ G2 ∪ · · · ∪ Gn is a SVM - graph. We discuss the

method of labeling this new graph.

Let G1 = (p1, q1), G2 = (p2, q2), · · ·Gm = (pm, qm) be them SVM graphs. Then

G1 ∪G2 ∪ · · · ∪Gn hasp1 + p2 + · · ·+ pm vertices andq1 + q2 + · · ·+ qm edges.

Let e1i, 1 ≤ i ≤ q1, e2i, 1 ≤ i ≤ q2, · · · , emi, 1 ≤ i ≤ qm and

v1i, 1 ≤ i ≤ p1, v2i, 1 ≤ i ≤ p2, · · · , vmi, 1 ≤ i ≤ pm be the edges and vertices of the graph

G1, G2, · · · , Gm respectively.

Defineg : E(G1 ∪ G2 ∪ . . . , Gn) → {1, 2, · · · , p1 + p2 + · · · + q1 + q2 + · · · + qm} as

follows:

g(e1i) = f1(e1i)

g(e2i) = p1 + q1 + f2(e2i)

g(e3i) = p1 + q1 + p2 + q2 + f3(e3i)

· · · · · · · · ·

· · · · · · · · ·

g(emi) = p1 + q1 + p2 + q2 + p3 + q3 + · · ·+ pm + qm + fm(emi)
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Then the induced vertex labels will be as follows:

gv(v1i) = f v
1 (v1i)

gv(v2i) = p1 + q1 + f v
2 (v2i)

gv(v3i) = p1 + q1 + p2 + q2 + f v
3 (v3i)

· · · · · · · · ·

· · · · · · · · ·

gv(vmi) = p1 + q1 + p2 + q2 + p3 + q3 + · · ·+ pm + qm + f v
m(vmi)

7.3 P 2
n , n ≥ 3 as SVM - graph

Theorem 7.3.1.The graphP 2
n , n ≥ 3 is a SVM - graph.

Proof. Let Pn be a pathu1u2 · · · un, n ≥ 3. ThenP 2
n is a graph with the edge setE =

{u1u2, u2u3, · · · , un−1un, u1u3, u2u4, · · · , un−2un}. ClearlyP 2
n hasn vertices and2n − 3

edges.

ObviouslyP 2
3 is C3 whose labeling we have discussed already. So letn ≥ 4. Definef :

E → {1, 2, 3, · · · , 3n− 3} as follows:

f(uiui+1) =























































1, if i = 1,

5, if i = 2,

3i− 1, if 3 ≤ i ≤ n− 2 andi is odd,

3i− 2, if 4 ≤ i ≤ n− 2 andi is even,

3n− 3, if i = n− 1.

f(uiui+2) =







































3, if i = 1,

3i, if 2 ≤ i ≤ n− 3 andi is even,

3i+ 2 if 3 ≤ i ≤ n− 3 andi is odd,

3n− 5, if i = n− 2.
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It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =







































































2, if i = 1,

4, if i = 2,

3i− 2, if 3 ≤ i ≤ n− 2 andi is odd,

3i, if 4 ≤ i ≤ n− 2 andi is even,

3n− 6, if i = n− 1,

3n− 4, if i = n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 3n− 3}.

7.4 Cycle related Graphs

In a graphG, the distance between two verticesu andv denoted bydG(u, v) is the length

of the shortest path joiningu andv. LetH be a subgraph ofG. ThendH(u, v) denotes the

distance betweenu andv in H. In this section we find the SVM - labeling ofCn together

with a chorduv such thatdCn
(u, v) = 2, 3, 4, 5, 6 or 7

7.4.1 Cycle with a Chord connecting arc of distance2

Theorem 7.4.1.Let Cn be a cycle of lengthn ≥ 4 and letG be a graph obtained from

Cn by takingV (G) = V (Cn) andE(G) = E(Cn) ∪ {uv} such thatdCn
(u, v) = 2, where

u, v ∈ V (Cn). ThenG is a SVM - graph.

Proof. LetCn, n ≥ 4 be a cycleu1u2 · · · unu1 and letu = u2 andv = un. ThendCn
(u, v) =

2.

LetG be a graph obtained fromCn by takingV (G) = V (Cn) andE(G) = E(Cn)∪{uv}.

ThenG hasn+ 1 edges andn vertices, making a total of2n+ 1 elements.
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Let the edges ofG be such that

ei = uiui+1, 1 ≤ i ≤ n− 1, en = unu1 & en+1 = uv = u2un

The SVM labelings of graphs thus obtained fromC4, C5, C6, C7 andC10 are shown in

the following Figure7.1.
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Figure 7.1: SVM - Labeling ofCn ∪ {uv}, n = 4, 5, 6, 7, 10 respectively.

Now we continue to discuss Super Vertex Meanness of rest of the graphs obtained in the

following two cases.

Case 1:Whenn ≡ 0 or 2(mod 3), n ≥ 8

Definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































1, if i = 1,

5, if i = 2,

2i+ 2, if 3 ≤ i ≤ dn
3
e,

2i+ 3, if dn
3
e+ 1 ≤ i ≤ n− 1,

3, if i = n,

6, if i = n+ 1.
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It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =























































2, if i = 1,

4, if i = 2,

2i+ 1, if 3 ≤ i ≤ dn
3
e,

2i+ 2, if dn
3
e+ 1 ≤ i ≤ n− 1,

2dn
3
e+ 3, if i = n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}.

Case 2:Whenn ≡ 1(mod 3), n ≥ 13

Definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =























































1, if i = 1,

4, if i = 2,

7, if i = 3,

9, if i = 4,

2i+ 2, if 5 ≤ i ≤ dn
3
e,

f(ei) =



























2i+ 3, if dn
3
e+ 1 ≤ i ≤ n− 1,

3, if i = n,

10, if i = n+ 1.

It can be easily verified thatf is injective.
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Then, the induced vertex labels are as follows:

f v(ui) =



















































































2, if i = 1,

5, if i = 2,

6, if i = 3,

8, if i = 4,

2i+ 1, if 5 ≤ i ≤ dn
3
e,

2i+ 2, if dn
3
e+ 1 ≤ i ≤ n− 1,

2dn
3
e+ 3, if i = n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

7.4.2 Cycle with a Chord connecting arc of distance3

Theorem 7.4.2.Let Cn be a cycle of lengthn ≥ 6 and letG be a graph obtained from

Cn by takingV (G) = V (Cn) andE(G) = E(Cn) ∪ {uv} such thatdCn
(u, v) = 3, where

u, v ∈ V (Cn). ThenG is a SVM - graph.

Proof. Let Cn, n ≥ 6 be a cycleu1u2 · · · unu1 and letu = u1 and v = un−2. Then

dCn
(u, v) = 3.

LetG be a graph obtained fromCn by takingV (G) = V (Cn) andE(G) = E(Cn)∪{uv}.

ThenG hasn+ 1 edges andn vertices, making a total of2n+ 1 elements. Let the edges of

G be such that

ei = uiui+1, 1 ≤ i ≤ n− 1, en = unu1 & en+1 = uv = u1un−2

We prove the theorem in the following three cases.

Case 1:Whenn ≡ 0(mod 3), n ≥ 6

The SVM labeling of graph obtained fromC6 is shown in the following Figure7.2.

151



b b

b b

b b

11

13

2

4

9

8

1

Figure 7.2: Super Vertex Mean Labeling ofC6 ∪ {uv}.

Whenn ≥ 9 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =























































2i, if 1 ≤ i ≤ n
3
,

2i+ 1, if n
3
+ 1 ≤ i ≤ 2

3
n− 2,

2i+ 2, if 2
3
n− 1 ≤ i ≤ n− 3,

2i+ 1, if n− 2 ≤ i ≤ n,

1, if i = n+ 1.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =







































































2
3
n+ 1, if i = 1,

2i− 1, if 2 ≤ i ≤ n
3
,

2i, if n
3
+ 1 ≤ i ≤ 2

3
n− 2,

2i+ 1, if 2
3
n− 1 ≤ i ≤ n− 3,

4n
3
− 2, if i = n− 2,

2i, if n− 1 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}.
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Case 2:Whenn ≡ 1(mod 3), n ≥ 7

The SVM labeling of graph obtained fromC7 is shown in the following Figure7.3.
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Figure 7.3: Super Vertex Mean Labeling ofC7 ∪ {uv}.

Forn ≥ 10 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 2,

2i, if 3 ≤ i ≤ dn
3
e,

2i+ 1, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 3,

2i+ 2, if 2dn
3
e − 2 ≤ i ≤ n− 3,

2i+ 1, if n− 2 ≤ i ≤ n,

4, if i = n+ 1.

It can be easily verified thatf is injective.
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Then, the induced vertex labels are as follows:

f v(ui) =



















































































2dn
3
e+ 1, if i = 1,

2, if i = 2,

2i− 1, if 3 ≤ i ≤ dn
3
e,

2i, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 3,

2i+ 1, if 2dn
3
e − 2 ≤ i ≤ n− 3,

4dn
3
e − 4, if i = n− 2,

2i, if n− 1 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM graph.

Case 3:Whenn ≡ 2(mod 3), n ≥ 8

Definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 2,

2i, if 3 ≤ i ≤ dn
3
e,

2i+ 1, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 2,

2i+ 2, if 2dn
3
e − 1 ≤ i ≤ n− 3,

2i+ 1, if n− 2 ≤ i ≤ n,

4, if i = n+ 1.

It can be easily verified thatf is injective.
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Then, the induced vertex labels are as follows:

f v(ui) =



















































































2dn
3
e+ 1, if i = 1,

2, if i = 2,

2i− 1, if 3 ≤ i ≤ dn
3
e,

2i, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 2,

2i+ 1, if 2dn
3
e − 1 ≤ i ≤ n− 3,

4dn
3
e − 2, if i = n− 2,

2i, if n− 1 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

7.4.3 Cycle with a Chord connecting arc of distance4

Theorem 7.4.3.Let Cn be a cycle of lengthn ≥ 8 and letG be a graph obtained from

Cn by takingV (G) = V (Cn) andE(G) = E(Cn) ∪ {uv} such thatdCn
(u, v) = 4, where

u, v ∈ V (Cn). ThenG is a SVM - graph.

Proof. Let Cn, n ≥ 8 be a cycleu1u2 · · · unu1 and letu = u1 and v = un−3. Then

dCn
(u, v) = 4.

Let the edges ofG be such that

ei = uiui+1, 1 ≤ i ≤ n− 1, en = unu1 & en+1 = uv = u1un−3

LetG be a graph obtained fromCn by takingV (G) = V (Cn) andE(G) = E(Cn) ∪ {uv}.

ThenG hasn+ 1 edges andn vertices, making a total of2n+ 1 elements.

We prove the theorem in the following three cases.

Case 1:Whenn ≡ 0(mod 3), n ≥ 9

The SVM labeling of graph obtained fromC9 is shown in the following Figure7.4.
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Figure 7.4: Super Vertex Mean Labeling ofC9 ∪ {uv}.

Whenn ≥ 12 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 3,

2i, if 4 ≤ i ≤ n
3
+ 1,

2i+ 1, if n
3
+ 2 ≤ i ≤ 2

3
n− 2,

2i+ 2, if 2
3
n− 1 ≤ i ≤ n− 4,

2i+ 1, if n− 3 ≤ i ≤ n,

6, if i = n+ 1.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =



















































































2n
3
+ 3, if i = 1,

2i, if 2 ≤ i ≤ 3,

2i− 1, if 4 ≤ i ≤ n
3
+ 1,

2i, if n
3
+ 2 ≤ i ≤ 2

3
n− 2,

2i+ 1, if 2n
3
− 1 ≤ i ≤ n− 4,

4n
3
− 2, if i = n− 3,

2i, if n− 2 ≤ i ≤ n.
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Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM graph.

Case 2:Whenn ≡ 1(mod 3), n ≥ 10

Definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 3,

2i, if 4 ≤ i ≤ bn
3
c+ 1,

2i+ 1, if bn
3
c+ 2 ≤ i ≤ 2bn

3
c − 1,

2i+ 2, if 2bn
3
c ≤ i ≤ n− 4,

2i+ 1, if n− 3 ≤ i ≤ n,

6, if i = n+ 1.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =



















































































2bn
3
c+ 3, if i = 1,

2i, if 2 ≤ i ≤ 3,

2i− 1, if 4 ≤ i ≤ bn
3
c+ 1,

2i, if bn
3
c+ 2 ≤ i ≤ 2bn

3
c − 1,

2i+ 1, if 2bn
3
c ≤ i ≤ n− 4,

4bn
3
c, if i = n− 3,

2i, if n− 2 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

Case 3:Whenn ≡ 2(mod 3), n ≥ 8

The SVM - labeling of graph obtained fromC8 is shown in the following Figure7.5.
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Figure 7.5: Super Vertex Mean Labeling ofC8 ∪ {uv}.

Forn ≥ 11 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































1, if i = 1,

2i, if 2 ≤ i ≤ dn
3
e,

2i+ 1, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 3,

2i+ 2, if 2dn
3
e − 2 ≤ i ≤ n− 4,

2i+ 1, if n− 3 ≤ i ≤ n,

2, if i = n+ 1.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =







































































2dn
3
e+ 1, if i = 1,

2i− 1, if 2 ≤ i ≤ dn
3
e,

2i, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 3,

2i+ 1, if 2dn
3
e − 2 ≤ i ≤ n− 4,

4dn
3
e − 4, if i = n− 3,

2i, if n− 2 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.
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7.4.4 Cycle with a Chord connecting arc of distance5

Theorem 7.4.4.Let Cn be a cycle of lengthn ≥ 10 and letG be a graph obtained from

Cn by takingV (G) = V (Cn) andE(G) = E(Cn) ∪ {uv} such thatdCn
(u, v) = 5, where

u, v ∈ V (Cn). ThenG is a SVM - graph.

Proof. Let Cn, n ≥ 10 be a cycleu1u2 · · · unu1 and letu = u1 and v = un−4. Then

dCn
(u, v) = 5.

LetG be a graph obtained fromCn by takingV (G) = V (Cn) andE(G) = E(Cn) ∪ {uv}.

ThenG hasn+ 1 edges andn vertices, making a total of2n+ 1 elements.

Let the edges ofG be such that

ei = uiui+1, 1 ≤ i ≤ n− 1, en = unu1 & en+1 = uv = u1un−4

We prove the theorem in the following three cases.

Case 1:Whenn ≡ 0(mod 3), n ≥ 12

Definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































1, if i = 1,

2i, if 2 ≤ i ≤ n
3
,

2i+ 1, if n
3
+ 1 ≤ i ≤ 2

3
n− 3,

2i+ 2, if 2
3
n− 2 ≤ i ≤ n− 5,

2i+ 1, if n− 4 ≤ i ≤ n,

2, if i = n+ 1.

It can be easily verified thatf is injective.
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Then, the induced vertex labels are as follows:

f v(ui) =







































































2n
3
+ 1, if i = 1,

2i− 1, if 2 ≤ i ≤ n
3
,

2i, if n
3
+ 1 ≤ i ≤ 2

3
n− 3,

2i+ 1, if 2
3
n− 2 ≤ i ≤ n− 5,

4n
3
− 4, if i = n− 4,

2i, if n− 3 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

Case 2:Whenn ≡ 1(mod 3), n ≥ 10

The SVM labeling of graph obtained fromC10 is shown in the following Figure7.6.

b
b

b

b

b

b

b b

b

b

21

19
17

15

12

4

13

8
6

3

1

Figure 7.6: Super Vertex Mean Labeling ofC10 ∪ {uv}.

Forn ≥ 13 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =



























2i− 1, if 1 ≤ i ≤ 2,

2i, if 3 ≤ i ≤ dn
3
e,

2i+ 1, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 4,
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f(ei) =



























2i+ 2, if 2dn
3
e − 3 ≤ i ≤ n− 5,

2i+ 1, if n− 4 ≤ i ≤ n,

4, if i = n+ 1.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =



















































































2dn
3
e+ 1, if i = 1,

2, if i = 2,

2i− 1, if 3 ≤ i ≤ dn
3
e,

2i, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 4,

2i+ 1, if 2dn
3
e − 3 ≤ i ≤ n− 5,

4dn
3
e − 6, if i = n− 4,

2i, if n− 3 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

Case 3:Whenn ≡ 2(mod 3), n ≥ 11

The SVM - labeling of graph obtained fromC11 is shown in the following Figure7.7.

Forn ≥ 14 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 4,

2i, if 5 ≤ i ≤ dn
3
e+ 1,

2i+ 1, if dn
3
e+ 2 ≤ i ≤ 2dn

3
e − 3,

2i+ 2, if 2dn
3
e − 2 ≤ i ≤ n− 5,

2i+ 1, if n− 4 ≤ i ≤ n,

8, if i = n+ 1.

It can be easily verified thatf is injective.
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Figure 7.7: Super Vertex Mean Labeling ofC11 ∪ {uv}.

Then, the induced vertex labels are as follows:

f v(ui) =



















































































2dn
3
e+ 3, if i = 1,

2i− 2, if 2 ≤ i ≤ 4,

2i− 1, if 5 ≤ i ≤ dn
3
e+ 1,

2i, if dn
3
e+ 2 ≤ i ≤ 2dn

3
e − 3,

2i+ 1, if 2dn
3
e − 2 ≤ i ≤ n− 5,

4dn
3
e − 4, if i = n− 4,

2i, if n− 3 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

7.4.5 Cycle with a Chord connecting arc of distance6

Theorem 7.4.5.Let Cn be a cycle of lengthn ≥ 12 and letG be a graph obtained from

Cn by takingV (G) = V (Cn) andE(G) = E(Cn) ∪ {uv} such thatdCn
(u, v) = 6, where

u, v ∈ V (Cn). ThenG is a SVM - graph.
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Proof. Let Cn, n ≥ 12 be a cycleu1u2 · · · unu1 and letu = u1 and v = un−5. Then

dCn
(u, v) = 6.

LetG be a graph obtained fromCn by takingV (G) = V (Cn) andE(G) = E(Cn)∪{uv}.

ThenG hasn+ 1 edges andn vertices, making a total of2n+ 1 elements.

Let the edges ofG be such that

ei = uiui+1, 1 ≤ i ≤ n− 1, en = unu1 & en+1 = uv = u1un−5

We prove the theorem in the following three cases.

Case 1:Whenn ≡ 0(mod 3), n ≥ 12

The SVM labeling of graph obtained fromC12 is shown in the following Figure7.8.

b
b

b
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Figure 7.8: Super Vertex Mean Labeling ofC12 ∪ {uv}.

Forn ≥ 15 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 3,

2i, if 4 ≤ i ≤ n
3
+ 1,

2i+ 1, if n
3
+ 2 ≤ i ≤ 2

3
n− 3,

2i+ 2, if 2
3
n− 2 ≤ i ≤ n− 6,

2i+ 1, if n− 5 ≤ i ≤ n,

6, if i = n+ 1.
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It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =



















































































2n
3
+ 3, if i = 1,

2i− 2, if 2 ≤ i ≤ 3,

2i− 1, if 4 ≤ i ≤ n
3
+ 1,

2i, if n
3
+ 2 ≤ i ≤ 2

3
n− 3,

2i+ 1, if 2
3
n− 2 ≤ i ≤ n− 6,

4n
3
− 4, if i = n− 5,

2i, if n− 4 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

Case 2:Whenn ≡ 1(mod 3), n ≥ 13

The SVM - labeling of graph obtained fromC13 is shown in the following Figure7.9.
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Figure 7.9: Super Vertex Mean Labeling ofC13 ∪ {uv}.
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Forn ≥ 16 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 5,

2i, if 6 ≤ i ≤ dn
3
e+ 1,

2i+ 1, if dn
3
e+ 2 ≤ i ≤ 2dn

3
e − 4,

2i+ 2, if 2dn
3
e − 3 ≤ i ≤ n− 6,

2i+ 1, if n− 5 ≤ i ≤ n,

10, if i = n+ 1.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =



















































































2dn
3
e+ 3, if i = 1,

2i− 2, if 2 ≤ i ≤ 5,

2i− 1, if 6 ≤ i ≤ dn
3
e+ 1,

2i, if dn
3
e+ 2 ≤ i ≤ 2dn

3
e − 4,

2i+ 1, if 2dn
3
e − 3 ≤ i ≤ n− 6,

4dn
3
e − 6, if i = n− 5,

2i, if n− 4 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM graph.

Case 3:Whenn ≡ 2(mod 3), n ≥ 14
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Definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 3,

2i, if 4 ≤ i ≤ dn
3
e,

2i+ 1, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 4,

2i+ 2, if 2dn
3
e − 3 ≤ i ≤ n− 6,

2i+ 1, if n− 5 ≤ i ≤ n,

4, if i = n+ 1.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =



















































































2dn
3
e+ 1, if i = 1,

2, if i = 2,

2i− 1, if 3 ≤ i ≤ dn
3
e,

2i− 1, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 4,

2i+ 1, if 2dn
3
e − 3 ≤ i ≤ n− 6,

4dn
3
e − 6, if i = n− 5,

2i, if n− 4 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

7.4.6 Cycle with a Chord connecting arc of distance7

Theorem 7.4.6.Let Cn be a cycle of lengthn ≥ 14 and letG be a graph obtained from

Cn by takingV (G) = V (Cn) andE(G) = E(Cn) ∪ {uv} such thatdCn
(u, v) = 7, where

u, v ∈ V (Cn). ThenG is a SVM - graph.

Proof. Let Cn, n ≥ 14 be a cycleu1u2 · · · unu1 and letu = u1 and v = un−6. Then

dCn
(u, v) = 7.
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LetG be a graph obtained fromCn by takingV (G) = V (Cn) andE(G) = E(Cn)∪{uv}.

ThenG hasn+ 1 edges andn vertices, making a total of2n+ 1 elements.

Let the edges ofG be such that

ei = uiui+1, 1 ≤ i ≤ n− 1, en = unu1 & en+1 = uv = u1un−6

We prove the theorem in the following three cases.

Case 1:Whenn ≡ 0(mod 3), n ≥ 15

The SVM labeling of graph obtained fromC15 is shown in the following Figure7.10.
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Figure 7.10: Super Vertex Mean Labeling ofC15 ∪ {uv}.

Forn ≥ 18 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 6,

2i, if 7 ≤ i ≤ n
3
+ 2,

2i+ 1, if n
3
+ 3 ≤ i ≤ 2

3
n− 3,

2i+ 2, if 2
3
n− 2 ≤ i ≤ n− 7,

2i+ 1, if n− 6 ≤ i ≤ n,

12, if i = n+ 1.
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It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =



















































































2n
3
+ 5, if i = 1,

2i− 2, if 2 ≤ i ≤ 6,

2i− 1, if 7 ≤ i ≤ n
3
+ 2,

2i, if n
3
+ 3 ≤ i ≤ 2

3
n− 3,

2i+ 1, if 2
3
n− 2 ≤ i ≤ n− 7,

4n
3
− 4, if i = n− 6,

2i, if n− 5 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

Case 2:Whenn ≡ 1(mod 3), n ≥ 16

Definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 3,

2i, if 4 ≤ i ≤ dn
3
e,

2i+ 1, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 5,

2i+ 2, if 2dn
3
e − 4 ≤ i ≤ n− 7,

2i+ 1, if n− 6 ≤ i ≤ n,

6, if i = n+ 1.

It can be easily verified thatf is injective.
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Then, the induced vertex labels are as follows:

f v(ui) =



















































































2dn
3
e+ 1, if i = 1,

2i− 2, if 2 ≤ i ≤ 3,

2i− 1, if 4 ≤ i ≤ dn
3
e,

2i, if dn
3
e+ 1 ≤ i ≤ 2dn

3
e − 5,

2i+ 1, if 2dn
3
e − 4 ≤ i ≤ n− 7,

4dn
3
e − 8, if i = n− 6,

2i, if n− 5 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is a SVM - graph.

Case 3:Whenn ≡ 2(mod 3), n ≥ 14

The SVM - labeling of graph obtained fromC14 is shown in the following Figure7.11.
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Figure 7.11: Super Vertex Mean Labeling ofC14 ∪ {uv}.
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Forn ≥ 17 definef : E(G) → {1, 2, 3, · · · , 2n+ 1} as follows,

f(ei) =







































































2i− 1, if 1 ≤ i ≤ 4,

2i, if 5 ≤ i ≤ dn
3
e+ 1,

2i+ 1, if dn
3
e+ 2 ≤ i ≤ 2dn

3
e − 4,

2i+ 2, if 2dn
3
e − 3 ≤ i ≤ n− 7,

2i+ 1, if n− 6 ≤ i ≤ n,

8, if i = n+ 1.

It can be easily verified thatf is injective.

Then, the induced vertex labels are as follows:

f v(ui) =



















































































2dn
3
e+ 3, if i = 1,

2i− 2, if 2 ≤ i ≤ 4,

2i− 1, if 5 ≤ i ≤ dn
3
e+ 1,

2i, if dn
3
e+ 2 ≤ i ≤ 2dn

3
e − 4,

2i+ 1, if 2dn
3
e − 3 ≤ i ≤ n− 7,

4dn
3
e − 6, if i = n− 6,

2i, if n− 5 ≤ i ≤ n.

Clearly it can be proved that the set of edge labels and the induced vertex labels is

{1, 2, 3, · · · , 2n+ 1}. Sincef is a Super Vertex Mean labeling,G is an SVM - graph.
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Conclusion and Future Direction

In Chapter 1, we have given the basic concepts in graph theory that are needed for the

subsequent chapters. Also, we have presented certain graphlabeling concepts that are used

through the thesis in the second part of this chapter.

In Chapter 2, we have introduced Super Vertex Mean Labeling. We have proved that all

cycles exceptC4 are SVM graphs. Then we have discussed SVM labeling behaviorwith

regard to types-labeling of all cycles. Also, we have proved that ladder graph admits SVM

labeling. Finally, we have discussed the SVM labeling behavior of all fan graphs.

In Chapter 3, we have proved that triangular snake, quadrilateral snakes, pentagonal

snakes and hexagonal snakes are SVM graphs. Also we have proved thatkCn cyclic snake

with k blocks ofCn, n ≥ 7 andn ≡ 3(mod 4), kCn cyclic snake withk blocks ofCn, n ≥ 8

andn ≡ 0(mod 4), kCn cyclic snake withk blocks ofCn, n ≥ 9 andn ≡ 1(mod 4) and

kCn cyclic snake withk blocks ofCn, n ≥ 10 andn ≡ 2(mod 4) are SVM graphs.

In Chapter 4, we have proved that linear quadrilateral snakes, linear pentagonal snakes,

linear hexagonal snakes, linear heptagonal snakes admit SVM labeling. Then we have

discussed SVM labeling behavior ofkCn cyclic snake withk, k > 2 blocks ofCn, n ≥ 8

andn ≡ 0(mod 2), Cn, n ≥ 9 andn ≡ 1(mod 4) andCn, n ≥ 11 andn ≡ 3(mod 4).

In Chapter 5, we have proved that linear edge linked cyclic snakesEL(kC4), EL(kC5),

EL(kC6), EL(kC7), EL(kC8), EL(kC9), EL(kC10), EL(kC11) are SVM graphs. Then

we have discussed SVM labeling behavior of linear edge linked cyclic snakesEL(kCn),

n ≡ 0(mod 12) andn ≥ 12, n ≡ 1(mod 12) andn ≥ 13, n ≡ 2 or 8(mod 12) andn ≥ 14,

n ≡ 3(mod 12) andn ≥ 15, n ≡ 4(mod 12) andn ≥ 16, n ≡ 5(mod 12) andn ≥ 17,

n ≡ 6(mod 12) andn ≥ 18, n ≡ 7(mod 12) andn ≥ 19, n ≡ 9(mod 12) andn ≥ 21,
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n ≡ 10(mod 12) andn ≥ 22 andn ≡ 11(mod 12) andn ≥ 23.

In Chapter 6, we have proved that all ther-regular graphs of order≤ 7 and all graphs

having no isolated or pendant vertex and order≤ 5, excludingC4 are SVM-graphs.

In Chapter 7, we have proved thatm copies ofC4 for m ≥ 2, Cm ∪ Cn for m,n ≥ 3,

union of graphs,P 2
n for n ≥ 3 are SVM-graphs. Also we have proved that cycles with a

chord connecting arc of distances 2, 3, 4, 5, 6, 7 admit SVM labeling.

We now point out some directions for interested researchersin the area of graph labeling:

1. Explore SVM labeling behaviour of other families of graphs that are not discussed

here.

2. Explore SVM labeling behaviour of trees.

3. It will be an interesting problem if one discusses the SVM labeling behavior of non-

linear edge linked cyclic snakes.

4. We can make an attempt to study SVM labeling behavior of splitting graph of cycle,

shadow graph of cycle, middle graph of cycle, total graph of cycle.

5. We can make an attempt to study SVM labeling behavior of alternative triangular

snake, alternative quadrilateral snakes etc.,

6. We can make an attempt to study SVM labeling behavior of cycle with a chord

connecting arc of distance≥ 8.

7. Do ther-regular graphs of order≥ 7 admit SVM labeling?

8. Does square of cycle admit SVM labeling?

9. Does akC- snake admit SVM labeling?
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